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Abstract

A computational procedure has been developed which solves the steady-state incompressible

Navier-Stokes (or Reynolds) equations for axisymmetric flows through turbomachinery. The

solution of the Navier-Stokes equations allows for the prediction of recirculating flow regions that

may be due to either through-flow geometry or off-design operating conditions. The effects of

the blade rows are represented in an approximate manner by replacing the forces they impart to

the fluid in the axial, radial, and tangential directions with body forces.

In order to provide an algorithm which can be applied to arbitrary turbomachinery geome-

tries, the grid covering the flow domain is mapped into a computational plane in which the nodal

spacing becomes unity. The Navier-Stokes equations are transformed so that they become a

spatial function of the generalized curvilinear coordinates that describe the computational plane.

However, changing the spatial dependence of the governing equations does not alter the con-

served quantities. Local flux conservation is ensured by expressing the system of equations in

conservative form and discretizing them using a control volume approach. Also, expressing the

governing equations in a general form allows the same program to treat flows in both axisymmet-

ric and Cartesian coordinate systems. Modifications making the Pressure-Weighted Interpolation

Method (PWIM) applicable to cylindrical based coordinate systems are presented. PWIM, cou-

pled with the SIMPLEC algorithm, is used to iteratively solve the discretized equations on a

nonstaggered grid.

A revised version of the quadratic upwind differencing scheme is presented, which allows the

high level of accuracy that the scheme provides to be maintained consistently throughout the

flow domain, including the areas near the boundarits. The modification entails neither additional

memory overhead .ior computational outlays.
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Two new differencing schemes have also been developed for axisymmetric applications. These

schemes reflect the coupling of the magnitude of the transported quantities with the radial loca-

tion in the cylindrical coordinate system and in the corresponding computational domain. Both

the lower and higher-order cylindrical differencing schemes differ from their Cartesian counter-

parts when the flow has a radial component. Neither scheme was found to cause any stability

problems.

The computer code was thoroughly validated against analytical results for flow in a pipe

and radial diffuser. Test cases were run showing the increased accuracy resulting from the ability

of the cylindrical differencing schemes to account for the radial dependence of the convected

quantities. The quadratic upwind differencing scheme is shown to reduce numerical diffusion,

and the modifications to the scheme extend this capability to the boundaries of the flow domain.

Through-flow calculations of flow in a centrifugal impeller over a wide range of operating

conditions are presented and compared against experimental results. For off-design operating

conditions the computer program was found to successfully predict recirculation zones within the

blade rows. Calculated velocity profiles display the same trends as the measured data at both

design and off-design conditions. With the original estimated parameters in the blade model, the

overall impeller performance characteristics were predicted with varied success over the range of

operating conditions investigated. No attempts were made to improve the performance prediction

by modifying the parameters in the blade model.
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Chapter 1

Introduction

In order to describe the flow within a turbomachine, a number of highly complex flow phe-

nomena must be understood. Turbulence, boundary layer separation, large recirculating flow

regions, secondary flows, tip leakage, -.nd vortex shedding are examples of flow phenomena that

are difficult to quantify, yet strongly influence machine performance. The relative importance of

these different phenomena can increase or decrease as the operating conditions of the turboma-

chine change. For example, at off-design conditions the flow incidence angles can become large

enough to cause separated flows and stalled blades. Off-design conditions can also lead to large

variations in the hub-to-tip blade loading, which may induce large recirculating regions within

the blade rows. Turbulence and boundary layer effects also complicate the flow, even at the

design point.

One of the objectives of work in the field of turbomachinery is to predict the behavior of

the flow through blade passages and the resulting performance of the mechanical component.

The subject of the present research is the prediction of turbomachinery performance as indicated

by the flow in the through-flow, or axisymmetric, plane. Successfully predicting turbomachine

performance depends on the ability to predict the significance of the complex flow phenomena

and the ability to model the phenomena themselves when necessary.

The goal of this project was to develop a computer program for predicting incompressible

steady-state axisymmetric flow, with special emphasis on turbomachinery applications. Only

incompressible flows are considered, because there is a large family of turbcmachines in which

compressibility effects are negligible, and because numerical algorithms cannot be applied equally
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well to both incompressible and compressible flows. Only steady-state conditions are considered,

because transient behavior is relatively unimportant in a number of turbomachinery applications.

Turbomachines are composed of rotating blades or vanes that either impart energy to the fluid or

extract energy from the flow. In through-flow turbomachinery analyses, the effects of the blades

can be introduced by estimating the forces that the blades exert on the flow and by applying

these forces within the blade rows as body forces. Using this approach, the effects of the blades

can be accounted for in the axisymmetric plane. Thus, the performance of the turbomachine can

be calculated without having to make difficult and costly three-dimensional analyses. Making

the assumption of axial symmetry implies that the variations of the flow fields in the angular

direction are zero. However, the tangential velocity is nonzero and remains a function of the

axial and radial coordinates.

Collecting experimental data inside high-speed rotors and small twisting fluid passages is a

formidably expensive and hardware-intensive process. Therefore, relying solely on experimental

evaluation can be costly and time consuming during the design and development of a turboma-

chine. Numerical algorithms which have been verified against experimental or analytical results

can be used to supplement experimental data and to provide a means by which performance

can be estimated during the design process. Throughout the development of turbomachinery

design and analysis methods, numerous simplifying assumptions have been utilized to render the

design problem tractable. However, modern numerical techniques have enabled many of the more

complex flow phenomena to be analyzed in detail. Discrete mathematics must be used to solve

for flow fields of practical interest, because the governing equations of fluid flow are coupled,

nonlinear, partial differential equations and analytic solutions exist for only the "nost primitive

geometries and flow conditions.

Numerical techniques combined with the digital computer have presented the turbomachin-

ery field with a powerful tool. With an eventual goal of completely predicting the flow behavior
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throughout the entire operating range of a turbomachine, numerous advances in the field of Com-

putational Fluid Dynamics (CFD) have been made over the past two decades. Because of slow

computer processing speeds and insufficient memory, early investigators were often required to

make many simplifying assumptions regarding the flow. Tremendous increases in computer ca-

pabilities coupled with improvements in modern algorithms now allow more realistic calculations

to be made.

Hardware and software limitations forced the assumption of inviscid flow upon early numer-

ical investigators of the flow in turbomachines. Methods such as streamline curvature [1] and

inviscid cascade analyses cannot predict the important contribution that viscosity makes to the

flow behavior. At the design point, inviscid approximations may be acceptable for determin-

ing pressure distributions and flow angles. However, inviscid analyses cannot determine total

pressure losses and the efficiency of turbomachinery components. At off-design conditions, the

inviscid approximation is even less valid.

Even if the viscosity of the fluid is accounted for, there are still approximations which can be

made which will greatly simplify the governing equations. The first three-dimensional calculations

of a centrifugal impeller were made using the partially-parabolic Navier-Stokes equations (PPNS)

[2]. Adopting the PPNS assumptions greatly restricts the applicability of the results. Off-design

conditions or flows with recirculating regions in the streamwise direction cannot be predicted,

because in these cases the equations are no longer parabolic in nature, but become elliptic.

Over the past few years, reports of fully elliptic three-dimensional turbomachinery calcu-

lations have been published for axial flow turbines [3], linear turbine cascades [4], axial flow

compressors [5], and centrifugal impellers [6]. The results are promising, considering the coarse-

ness of the grids that were used. Turbulence was modeled, and recirculation was predicted, but

the results can only be said to be accurate in a qualitative rather than quantitative sense. In 1988,

Hah ei al. [7] stated that no successful viscous three-dimensional calculations had been made

for a centrifugal impeller at off-design conditions. Their results, too, show only a fair agreement
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with experimental data. The errors are seemingly due to two fundamental causes. The first is an

inability to accurately quantify turbulent phenomena. The second is due to the use of upwind

differencing on the coarse grids. This report proposes a way of decreasing this latter error by

treating the convection in a manner that is consistent with its radial dependence in cylindrical

coordinate systems. Solving three-dimensional flows in a reasonable amount of time, even with a

modest size grid, requires the use of supercomputers or high-speed mainframes. These, however,

are too expensive and unavailable for widespread use in design applications.

Reducing spatial dimensional dependence from three to two greatly decreases the computa-

tional expense and memory requirements needed to solve the flow. In rotating turbomachinery

applications, the dimensional cutback means that the flow is solved in either the through-flow

plane (32 surface) or the blade-to-blade plane (SI surface), see F;g. 1.1. Only the through-flow

plane, in which axisymmetry is assumed, is treated in this project because of the abundance of

information pertaining to the performance of the turbomachine that flow on this surface pro-

vides. Efficiency, head rise, total pressure changes, and velocity profiles can all be determined

from solutions to the axisymmetric equations, and these solutions can be found in reasonable

amounts of computational time. Because viscosity strongly affects turbomachine performance at

certain operating conditions, the viscous axisymmetric flow equations are solved. The result is

that streamwise recirculating regions, including those within the blade rows can be calculated.

To this researcher's knowledge, no one has as yet published a successful calculation of this type

of recirculating zone.

In three-dimensional geometries, rotating turbomachine blades are treated using the typical

no-slip boundary conditions. However, in the axisymmetric frame, the blades are not part of the

flow domain boundary. The geometry for an axisymmetric flow is a pipe or annular section with

walls of arbitrary shape. Nowhere in this geometry are blade passages present. The geometry is

the same whether analyzing duct flow or turbomachinery through-flow. However, the flows for

these two cases are vastly different. Because the geometries are identical, the effects of the blades
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can only be brought into the momentum equations as external influences. Thus, by applying

body forces in the regions where the blade is projected onto the axisymmetric plane, the flow will

be effected as though blades are physically present. Axisymmetric flow does not restrict the fluid

to motion within a single axial-radial plane, so the external effect of the blades can be thought

of as determining the rate that the fluid moves relative to the blade for a given velocity vector

in the axisymmetric plane. Specifying the flow angle in this manner is effectively identical to

determining the amount of force that is required to turn the flow.

A variety of blade models that approximate the fluid-blade interaction have been presented

by previous researchers. Novak and Hearsey [81 solve inviscid quasi-3-D flows by alternating

between a through-flow calculation and a blade-to-blade analysis, using the latter to provide flow

angles to the through-flow calculation. This approach involves a great deal of computational

expense, because it alternately solves two types of flow problems. Multiple blade-to-blade calcu-

lations are performed on various radial surfaces of volution, and these data are coupled to the

solution in the through-flow plane. This technique is not applicable to viscous flows at off-design

conditions, because strong three-dimensional blade-to-blade effects violate the assumptions made

in transferring information between the blade-to-blade and through-flow solutions. Another way

of accounting for the presence of the blades is to replace them by the forces they impart to the

fluid. Martelli and Michelassi [9] use a single inviscid blade-to-blade calculation to provide the

pressures on the suction and pressure sides of the blades. This loading distribution is then used

to specify body forces for a viscous through-flow calculation. For off-design operating conditions

their approach is not valid, because the assumptions that are used to arrive at the blade loading

no longer hold. Jackson et al. [10] use a more reasonable approach in which the flow angles are

prescribed. They examined flow past a stator, which simplifies the calculation since the increase

of total pressure along the streamline does not need to be modeled.

The blade model developed in this investigation is related to the approach of Jackson et at.,

in that a flow angle is extracted from an estimated mean streamline. Because the geometry of the
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blade passage is known, it provides a good basis for estimating the streamline shape. To make

the flow solver applicable to general turbomachines, a method for predicting the energy input

along the blade row was formulated. The force required to conserve momentum in the nmcridional

direction, in addition to creating an estimated pressure change due to the energy input of the

blade, represents the effect the blade has on the conservation of axial and radial momentum.

An analysis tool must be general enough to be useful in a variety of situations. In the field

of turbomachinery computational fluid dynamics (CFD), this means that the flow solver must

be able to handle drastically different geometries. Towards this end, the governing equations are

transformed from the physical plane into a computational plane, which is defined b- a set of

body-fitted or generalized curvilinear coordinates.

In the chapters that follow, the computer program that performs the throuch-flow calcula-

tions is explained. The governing equations for a viscous, steady-state, incompressible, axisym-

metric flow are formally stated in Chapter 2. An explanation of the mapping operation is given

in Chapter 3, and its use in transforming the governing equations into the computational plane

is presented. Details of Rhie and Chow's [11] Pressure-Weighted Interpolation Method (PWIM)

are given in Chapter 4, along with justifications for employing this algorithm in the program.

Modifications to their approach have been made, and these are also discussed. The process of dis-

cretizing the governing equations is also explained in Chapter 4, along with other considerations

arising from the numerical solution algorithm. Special attention is paid to the intricacies brought

about by the use of the cylind-ical polar coordinate system. To this author's knowledge, no re-

searchers to date have presented modifications to PWIM that specifically adapt the algorithm to

cylindrical coordinate based applications. The turbulence model used in the program is explained

in Chapter 5. A full explanation of the blade model is contained in Chapter 6. The procedure

for verifying the computer program is documented in Chapter 7. Additionally, the results for a

number of test cases are given. Through-flow calculations of flow in a centrifugal impeller over

a range of operating conditions are presented in Chapter 8. The numerically calculated velocity
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profiles and overall performance characteristics are compared to experimental data. The calcu-

lated results are shown to successfully predict a number of important phenomena at off-design

flow conditions. The numerical result, consistently capture the trends of the velocity profiles

shown in the experimental data, although overall performance parameters are not as accurately

predicted. Modifications to the blade model to improve the performance predictions were not

made. Conclusions supported by the research are stated in Chapter 9, and recommendations for

future research are also given. The differencing schemes used in the discretization of the momen-

tum flux terms are discussed in the Appendix. An explanation of a new procedure for extending

Leonard's higher-order differencing scheme [12] all the way to the boundaries is also included in

this section. Additionally, two new differencing schemes that reflect flow characteristics in the

cylindrical polar coordinate system are also presented in the Appendix.



Chapter 2

Governing Conservation Equations

By accounting for inertial, pressure, and shear forces, Navier-Stokes based solvers are able

to reflect the physics of the flow of a real fluid inside a turbomachine. The Navier-Stoker equa-

tions are a set of coupled, nonlinear, elliptic equations. They are also known as the equations of

motion or conservation equations, because their solution yields a flow pattern that is consistent

with physical conservation laws of mass and momentum. For flows in which density changes can

be considered negligible, i.e. incompressible flows, the energy conservation equation is decoupled

from the momentum equations. Therefore, the energy equation is not considered in this inves-

tigation. Typically, an equation of state closes the system of equations, but the assumption of

incompressibility also eliminates the need for this type of relationship.

2.1. Conservation of Mass and Momentum for

Steady-State Incompressible Axisvrmmetric Flows

Turbomachinery flow passages involve some type of rotating mechanical component that

is comprised of blades or vanes. The cylindrical polar coordinate system is naturally associated

with such geometries. As the rotary device acts on the fluid media, it changes the flow properties.

Unless there are an infinite number of blades, the flow properties will vary in the angular direction.

If this variation is neglected or assumed negligible, (0 = 0), then the flow is independent of the

orientation of the viewing plane about the centerline and is axisymmetric.
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The governing equations for conservation of mass and momentum [13, 14] are shown in

Eqs. 2.2-5. These are the nonconservative forms of the steady-state equations for flow that is

a.xisymmetric and incompressible. Fluid acceleration is given by the substantial derivative, -.

Dimensional quantities are denoted by a "" superscript.

Substantial Derivative:

D 8 8
Di = T + j, --o÷(2.1)

Continuity:

8--" + 1 8( 5tr - 0 (2.2)

z - momentum:

p-- = -I + P,+
Di

2 ( + +T (2.3)

r - momentum:

[Dit J1

22- ( - - + - +2(a (2.4)
alt al; ai 81;8i"

6-momentum:

[1 ý + +-

+ _ý#)ka )+ 2 - ý (2.5)

Axial symmetry removes the tangential component of velocity from the continuity equation,

but ve is still coupled to the other velocity components through the momentum equations. Sym-

metry also removes the explicit effects of pressure from the angular momentum equation, but

ve remains coupled to the pressure field through the centripetal acceleration term (v2/r) in the

radial momentum equation. The bulk viscosity does not appear in the momentum equations
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because the divergence of the velocity is zero for incompressible flows. Spatially varying viscosity

is permitted with the form of the equations given. This is necessary since turbulence modeling is

implemented by supplementing the laminar viscosity with a local turbulent viscosity (- Chapter

5). Body forces per unit volume, F in the respective directions, provide a means by which the

presence of external entities, such as turbomachine blades, can be introduced into the momentum

equations. A complete discussion of the model which replaces the blades with the forces they

impart to the fluid is given in Chapter 6.

2.2 Non dimensionalization of the.Governing Equations

It is beneficial to express the governing equations in terms of nondimensional groups so

that the flow may be characterized by standard parameters. Dimensionless variables are also

advantageous from a numerical standpoint, because the values are usually scaled so that they lie

between zero and one, thereby reducing floating point errors associated with very large or small

numbers.

The first step in nondimensionalizing the equations is to select reference values. Bucking-

ham's Pi theory allows for the specification of four reference quantities. All other terms are

scaled by combinations of these values. The superscript in Eq. 2.6 indicates a characteristic

dimensional quantity.

-i = Z, z (2.6a)

fi= fjVi (2.6b)

p=3p (2.6e)

S= p ; (2.6d)
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p= 1 3p=(p) p (2.6e)

P=F FP -F F, (2.6f)

Re = --r (2.6g)P

The flow geometry determines the reference length, and the flow conditions set the appropriate

characteristic velocity. For incompressible flow, the reference density is equal to the fluid density,

which is a constant. Therefore, the nondimensional density is unity, but it is retained in the

equations for clarity. The fluid's molecular viscosity is the most convenient reference value for

the viscosity. Thus, for laminar flow the nondimensional viscosity is also one.

The Reynolds number, Re, which represents the ratio of inertial to viscous forces, appears

naturally in the momentum equations when they are nondimensionalized. Turbomachines operate

in the high Reynolds number regime. Thus, to minimize floating point errors during the numerical

solution, it is better to divide the viscous terms by Re rather than multiply the inertial terms by

the parameter. The resulting nondimensional equations are listed in Eqs. 2.8-11.

Substantial Derivative:
D C9 0

= V•t- I ' (2.7)

Continuity:

O(9.._) + or(pr,) = 0 (2.8)

z - momentum:

Dv, _ pp-'T=- + Fs +

-• 2 ,- 1 + r (ov + (2.9)
[ 9Z rr Or 49 Or

r - momentum:

[Dv, v.1 P + +PDt r i Fr

(2 O (y 2) + o,+ Ov, + ,. (2.10)
Tr b2 r +7 ~ 9
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0 - momentum:

rLr + F+

__ D(ve ye .11) #

!&(Ove +ye)v + '- 1- -v) (2.1
we ~ a r Or r) r Oar r

The fo:m of the continuity equation, Eq. 2.8, is not altered by the nondimensionalization

because, it contains only nonviscous terms.

2.3 Conservative Form of the Giverning Equations

The fundamental difference between the governing equations in cylindrical and Cartesian

coordinates is that surface area is dependent upon the radial displacement in the cylindrical frame

of reference. When rotating an area in the r - z plane about the centerline, the volume swept

out is a function of the radius of the centroid of the area. In control volume (CV) formulations,

this is manifested as a radial dependence of the surface area through which the flux is carried

into the control volume.

Consider an elemental line segment whose midpoint is displaced from the centerline by r,

as shown in Fig. 2.1. When rotated about the centerline, the line segment forms a frustum of a

cone. The mass flow rate across the segment is equal to:

rm = 27rpr(v, dr - v, dz) (2.12)

The factor of 2w is neglected in further discussions, since it will appear in the integral of every

axisymmetric term and can, therefore, be factored out.

In the control volume formulation, four such segments are joined together to form a quadri-

lateral which serves as a control volume. Thus, the mass flux into the CV is dependent only on

the facial properties and their radial locations. This presents a problem concerning the form in
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Figure 2.1

Elemental Segment of Control Volume Wall
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which the conservation equations are posed. The inertial terms in Eqs. 2.8-11 do not contain the

convective velocities multiplied by the radius, but these terms can be Mugebraically manipulated

to yield the desired form. These new expressions are described as being conservative. An equa-

tion is said to be in conservative form if the coefficients of the derivatives are either constant, or if

variable, their derivatives do not appear anywhere in the equation [15, p. 16]. Algebraically, the

equations are identical regardless of their form; however, the solution to the equations given in

Section 2.2 is nut found using exact analytical techniques. Discrete mathematics is used to solve

these nonlinear equations, and the final solution is dependent upon the form of the discretized

governing equations. By solving the equations in their conservative form, the flux crossing one

control volume face will be the same for each of the adjacent control volumes that share that face.

Global, as well as local, flux conservation is ensured by expressing the equations in conservative

form. Flux conservation is one aspect of control volume formulations which yields meaningful

results, even on coarse grids [16, p. 31].

The essential relationships for changing from nonconservative to conservative form are shown

in Eq. 2.13. Because the cylindrical coordinate system is orthogonal, r is independent of the

axial coordinate and may be brought inside the derivatives with respect to z.

49v,. v, 1 (rv,).r + - (2.13a)Lr r r &r

4v,_ 1 O(rv,) (2.13b)
az r 0:

Eqs. 2.14-17 present the conservative form of the governing equations. Not only are the

convection terms written in conservative fashion, but several viscous terms have been restructured

into this more convenient format. Each equation has been multiplied through by r to remove the

1/r factors which are present in Eq. 2.13. Continuity was used in conjunction with Eq. 2.13 to

eliminate the substantial derivative from the momentum equations.

Continuity:

0+ av (prv, 0 (2.14)

8: Or
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z - momentum:

O(prv, V.) a(prvv,) OP + TF +
az + 8r - z

+[or •+ [ (,o'T 1 J+ [ r ) + r-, ' \ (' (2.15)

r - momentum:

O(pr,-zv,) 8(prvv,) 2 = 9P 1 2pv,+8: + Or Pv,=-r+•-"rF - -- -
z rr re11Of Ov,.\ a9 f. 0,-\1 ' [O ,.• o/ (,.

1[2- (pr ) + 0 (pr )] + I (pr ) -T + a ("' )]r (2.16)
We' LzV 89) + r OrRaz Or Y'OrJ

0 - momentum:

O(prv ve) +(prvvs) I t=e a(Pr)
Oz + Or r+ pvv = rFO e or +

1 [2- (pr') + O (p'1 (2.17)

2.4 Comparison of the Cylindrical and Cartesian Forms of the Conservation Eauations

The two-dimensional conservation equations in Cartesian coordinates for steady-state incom-

pressible flow [17, p. 64] can be nondimensionalized and expressed in conservative fashion using

an approach similar to that given in the previous sections. In the Cartesian coordinate system

there is no counterpart to the radial distance, so relationships analogous to those in Eq. 2.13 are

not used. Instead, the continuity equation is enough to transform the substantial derivative into

conservative form. The resulting continuity and momentum equations are given in Eqs. 2.18-20.

Continuity:

0(p. ) + a 0 (2.18)Oz ay

z - momentum:

O(puu) 8(pvu) iapa(PU + 0a -p + F, +

I r (O -u) + a (,'u)] I [8a (p )+ 0 (( 2.1)We-P )+• TX + a T W;+ Ox (2.19)
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y - momentum:

8(puv) O(pvv) _ Op +Fa---;- + = L + Fy +

ay 09Y Re49 9y O

7?-LO R + a (OVn)) L~ r (PLU) + V iTY (2.20)

Since the orientation of the plane in which the axisymmetric equations are viewed is arbi-

trary, the centerline is specified to run horizontally and the radial axis vertically. This is the

most convenient arrangement because it aligns the directions of the cylindrical polar (:, r) and

Cartesian (x, y) base vectors. The velocity components v, and u are parallel, as are v, and v.

Eqs. 2.14-16 and Eqs. 2.18-20 are equivalent when three conditions are met:

1. The tangential velocity is zero everywhere.

2. The radius is unity wherever it appears as a multiplicative factor.

3. The radius is infinity wherever it appears in the denominator.

Under these conditions the axisymmetric equations are identical to those in the two-dimensional

Cartesian coordinate system. In the absence of blades or moving boundaries, the first condition

is met by setting the inlet swirl velocity, vo, equal to zero. In addition, setting r = 1 and 1/r = C,

enables the axisymmetric flow solver to solve flows in a Cartesian coordinate system as well. The

cost of implementing this capability is one extra memory array which allows r and 1/r to be

stored separately.



Chapter 3

Mapping from the Physical to the Computational Plane

For the complex flow geometries that are typically found in turbomachinery, it is often diffi-

cult or even impossible to generate quality orthogonal grids to cover the physical domain. Also,

for a grid to provide quality solutions, nodes must be concentrated in regions N, here severe gradi-

ents are to be resolved. From a numerical standpoint nonorthogonality and nonuniformity each

create difficulties. Only orthogonal grids possess the desirable feature of having each contravari-

ant velocity convect fluid across only one family of gridlines. Diffusion terms are more easily

evaluated when the gridlines intersect at right angles, because the gradient along one gridline is

independent of the gradient along the other gridline. Solving the governing equations discretely

also creates problems associated with the spacing of the nodes. Unequally spaced grids cause

large increases in the computational expense and memory associated with the discretization pro-

cess. Even when a control volume, rather than finite difference, approach is used, Taylor series

approximations are still employed in the evaluation of gradients. Uniform grids enable high-order

Taylor series approximations to be made with less computational effort than with nonuniform

grids.

The benefits of uniform orthogonal grids can be achieved on a grid that is neither orthogonal

nor uniform. This is accomplished by mapping the physical domain into a computational domain

in which the grid is orthogonal and has unit spacing. The governing equations are actually

solved on this computational grid. Since the grid on which the equations are solved lies in a new

plane, the governing equations must also be transformed so that they insure conservation in the

computational plane. In general, the transformation increases the complexity of the governing
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equations by introducing additional terms which are not present in the governing equations

expressed in the physical space. All of the information concerning the nonorthogonality and

nonuniformity of the grid in the physical space appears as fixed multiplicative factors in these

additional terms. The overall solution of the more complex equations in the computational space

is much less involved than the solution of the simpler equations directly on the physical space

grid.

In the physical coordinate system in which the grid is generated, the contours of the geometric

boundaries may not conform to curves of a constant coordinate. Thus, there can exist regions

where the discretized boundary lies a finite distance away from the true boundary. Solving the

governing equations on this type of grid would prevent an accurate application of the boundary

conditions. Thus, the body-fitted coordinates or generalized curvilinear coordinates are employed.

After transforming the body-fitted coordinates into the computational domain, the boundaries

of the computational grid correspond precisely to the geometric boundaries, so an accurate

application of the boundary conditions is possible.

The mapping operation is defined in the next section. This is followed by an explanation

of how the governing equations are transformed from the physical space into the computational

domain.

3.1 Specification of the Marpping Operation

The transformation from cylindrical to generalized curvilinear coordinates is a simple chain

rule expansion of the axial and radial coordinates (:,r) in terms of the C and Y) coordinates in

the computational plane.

a a
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If the grid on which the problem is to be solved is mapped into a computational plane, the

governing equations must also be transformed. After solving the system of equations, the results

must be referenced back to the corresponding locations of the grid nodes in the physical space.

Therefore, the mapping procedure must produce a set of points in the computational space for

which there is a one-to-one correspondence with the points in the physical space. To achieve this

one-to-one correspondence, the inverse transformation defined by Eq. 3.2 must exist.

(4 ze r,) (-2) (3.2)

Equating the coefficient matrix of the inverse mapping function (from Eq. 3.2) to the inverse

of the mapping function coefficient matrix (from Eq. 3.1) yields the closed description of the

transformation process.

z( r) (fz 71 (3.3)z, rn =7 Y"rl

= rq /J, =-•/J

77,= -rf/J, ,7r = zf/J (3.4)

J = zer, - znrf (3.5)

The Jacobian, J, of the system represents the ratio of the local physical space area to the

corresponding computational plane area. As long as J is nonzero, the inverse mapping function

will exist. If the value of the Jacobian vanishes, it indicates that a point in the physical space

corresponds to a region in the computational domain, a violation of the one-to-one condition of

the mapping. Positive area in the computational plane is assured by definition; therefore, if the

Jacobian is negative, the physical grid possesses locally overlapping gridlines. This indicates that

the original grid is inadequate to describe the physical system and must be changed. Otherwise,

the numerical solver will inevitably fail to function or fail to yield meaningful results.
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The terms in Eq. 3.4 are known as metrics. The subscript denotes partial differentiation

with respect to the coordinate variable. Since the spacing between nodes in the computational

grids is defined as unity, the metrics , and r, can be evaluated using finite difference

approximations. Second-order accuracy in the metrics is achieved by using central differencing in

the interior of the grid and one-sided differencing at the boundaries. The curvilinear coordinates

are not directly known as functions of (z,r); therefore, the inverse formulations, Eq. 3.4, must

be used to evaluate the metrics t ,I , 17,, and 17,.

In an effort to minimize the complexity of the representation of the transport equations,

tensor summation notation is adopted and used throughout this work. Repeated indices indicate

a summation over the index from one to two, with the following equalities specifying the indicial

correspondence:

aa a 0
ý; = _- = F- (3-6)

Oz, 8z' 8z 2  ar

a a a 9 a

Thus, the mapping operation is defined as follows:

a = atO (3.8)

az; .- ac,

In the computational plane, it is desirable to express the terms in the governing equations

in strongly conservative form. To do this, the metrics must be brought inside the derivatives.

As shown in the resulting identity given in Eq. 3.11, this can be accomplished by bringing

the Jacobian into the derivatives along with the metrics. In this development, the symbol 0

represents a general transport quantity for which the derivative is to be determined. Starting

with the application of the chain rule, Eq. 3.9 is obtained.

ao I (oj )o I oa (joat 0) 10 a (3.9)
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By expanding over repeated indices, it is shown in Eq. 3.10 that the last term in Eq. 3.9 is equal

to zero for :i equaling both z and r.

1 s J9 = O* a or o a:= 0 (3.10a)
i a (a \1 1 ( z 17M
1 -0 L9 1 a , az 49 c = 0 (3.10b)

After interchanging the order of differentiation, which is permissible because • and 17 are smooth,

continuous functions of z and r, the terms within the parentheses cancel. Thus, the desired

identity is obtained:

=' -zi (3.11)

When the conservation equations ae transformed from the physical plane to the computa-

tional domain, metric invariance with respect to the order of differentiation is required so that

Eq. 3.10 is valid. This can be accomplished analytically by making use of the identity shown in

Eq. 3.11 during the transformation ý_ the governing equations, or it can be done numerically by

insuring the finite difference forms of the metrics satisfy:

-0 a z (3.12a)

=8r 9 ar (3.12b)
Tý F7 T17 Tý

Actually, Eq. 3 12 should be met regardless of the approach taken to prevent the metric in-

variance from effecting the governing equations, because it ensures more accurate expressions of

the metrics. As long as the metrics are evaluated on a local scale, Eq. 3.12 will hold. It will

not hold if the metrics are interpolated using quantities at neighboring regions. This type of

interpolation destroys the meaning of the Jacobian, which, as previously stated, is the ratio of

the local physical space area to that in the computational plane.
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3.2 Transformation of the Governinz Equations into

Generalized Curvilinear Coordinates

If the governing axisymmetric equations are to be solved in the computational space, then

they must be transformed to an equivalent form in that plane. A discussion of this transformation

is given in this section.

On the left hand side of each of the four conservation equations (Eq. 2.14-17) there exists a

convection term of the form:

a(prvi) (313)
4ozi

where 0 represents the transported quantity. For the continuity equation, € = 1. For the mo-

mentum equations, 4 is simply the corresponding velocity components. This term is transformed

by reexpressing the derivatives in terms of gradients with respect to (ý, 77). The metrics are then

brought inside, using the identity in Eq. 3.11.

O(prvjO) = aG -(prv 14) = 1 a () (3.14)

The velocities and metrics within the derivative can be combined to form scaled contravariant

velocit;es in the computational plane, (U, V), defined by the following equations:

U = J(,v., + v,) = r,, v, - Z'7 (3 .15a)

V = J(1',v, + 17rvW) = z~v,. - rfv1  (3.15b)

Uj = j-•-8 Vz (3.15c)

Throughout this paper U and V are referred to as contravariant or convective velocities.

Actually, they are the Jacobian times the rate the fluid particles travel in the f and ,7 directions,

respectively. The J scaling factor is explicitly ignored in the name, but it remains implied.
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Substituting Eq. 3.15c into Eq. 3.14 yields the transformed convection term:

a(prv,4O) _I 49(prU,4O)(3)

To verify that Uj is a contravariant velocity, consider once again the elemental segment

shown in Fig. 2.1. If it is mapped into a segment of constant C or T), the metrics become the

ratio of the lengths. Multiplying the contravariant velocities by the radius and the density gives:

prU = pr(v, Ar - v, Az)/Ai (3,17a)

prV = pr(v,.Az - v Ar)/Aa (317b)

Recalling that the nodal spacing in the computational plane is unity, the Ac and At/ factors can

be ignored. Comparing these relationships with those of the mass flow rate in Eq. 2.12, it can be

seen that the contravariant velocities are responsible for transporting all mass across a control

volume face. This is proof that U and V are contravariant rather than covariant velocities; more

importantly, it demonstrates the reason for using the conservative form of the equations. The

transformed continuity equation contains the prU and prV terms. When integrated over the

area, the transformed continuity equation states that the net mass accumulation in the control

volume is zero. Thus, the transformation to computational space has not changed the effective

meaning of the continuity equation. This would not be the case if the nonconservative form of

the continuity equation (Eq. 3.18) had been transformed.

a(pv') +(pv 7)+pv, = 0 (3.18)
az 4r r

The body force terms are not affected by the transformation, since no spatial derivatives

are involved. The same holds true for the centripetal acceleration term in the radial momentum

equation and its counterpart in the angular momentum equation. A direct applicatien of the

mapping equations is used to transform the pressure gradients

Each momentum equation contains a diffusion term which appears in the general transport

equation. In keeping with convention, ( is substituted for the transported quantities, and the
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diffusive coefficient, r, replaces the viscosity. This term is transformed by applying Eq. 3.8 to

the inner gradient and 3.11 to the outer gradient.

ýý-j (rŽ) a = 49Z (rj ± -9- )~ 1±j (r .-I ( C9 i 8~k)8) (19

After transforming the derivatives with respect to the physical space coordinates, all that remains

are gradients with respect to the computational plane coordinates and terms involving the trans-

formation metrics. A new variable, 9jk, is created to represent the combination of metrics which

appear in the diffusion terms. This variable it defined in Eq. 3.20 for each indicial permutation.

When j and k are not equal, the resulting diffusion is known as cross-diffusion, because it arises

out of the grid nonorthogonality.

= - +=,- ( +r 7r)J 2  (3.20a)

922 = 277 + ,i = (z( + ,-)/i (3.20b)

g12 = 921 = G'77- + Gr/ = -(zz,, + rfr,7)/J 2  (3.20c)

9jk = (3.20d)azi = " z-

Substituting g.,• for the rmetric combinations yields the following final form of the diffusion

term:

(•r,:.4i =- r-J g (3.21)

Another term has a structure common to both the radial and axial momentum equations.

It is of the form:

8 1, t', r \ (3.22)

where zi indicates which momentum equation is under consideration. This term is mapped using

the same steps shown in Eq. 3.19. The metrics from the outer derivative cannot be brought
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into the inner derivative and combined with vi to create the contravariant velocities, because the

indices %,o iiot corfýrm to those appeating in the identity of Eq. 3,11.

a (pr =' (•.23)

When expanded over repeated indices, eight separate terms are formed. The inability to reexpress

this quantity in a simplified form has a negative impact from the standpoint of computational

efficiency. However, the inefficiency is lessened by the appearance of some of these gradients in

the cross-diffusion terms of Eq. 3.21.

The remaining terms in the momentum equations are coordinate specific, each of which is

transformed by a direct application of the mapping functions. Gathering together each compo-

nent term in the continuity and momentum equations and multiplying through by the Jacobian

gives the conservative form of the nondimensional governing equations in generalized curvilinear

coordinates.

Continuity:
8(pru) O(prV) = 0 (3.24)

+ 07 o(724aý an

z - momentum:

a(prUv,) + -(prVv,) =rJF, - r (J +

+ a (rr- J 0: o-,K)] (3.25)

r - momentum:

o(prUv,) + (prVv,) = Jp2 + rJFr - r -p
a+ Or 0-i

1 a (prkgJk 0: (JO) ~ , (3.26)

0 - momentum:

a(prUve) O(prllve)4% = -Jpvrve + rJFo +

81[-L 7prJg7t - (3.27)
Re- af (J0 ))



27

Although the governing equations are transformed, the quantity which is conserved is not

altered. Eqs. 3.25-27 contain the cylindrical coordinate velocity components (v,, v, and ve)

and represent conservation of momentum ;n the axial, radial, and tangential directions, respec-

tively. It is possible to combine the momentum relationships to yield formulations which c-.... rve

momentum in the C and qi directions [18], but this makes the solution algorithm much more com-

plicated due to the fact that the mapping is carried out on a local scale and the directions of

(ý, il) with respect to (z, r) are constantly changing. The following chapter describes the numer-

ical method used for solving Eqs. 3.24-27.



Chapter 4

Numerical Solution Method

The only type of general equation, or system of equations, that can be solved is a linear

equation, or set thereof. However, the Navier-Stokes equations are nonlinear as a result of the

convection terms. Thus, continuous analytic solutions to the closed system cannot, in general, be

found. To get the equations into a solvable form, they are discretized via a linearization process,

and solved at distinct points, called grid nodes. An iterative solution is employed to make the

solution of the linear discretized equations reflect the nonlinearity of the system of equations they

are describing.

Although discretization is a fundamental process in the iterative solution scheme, the partic-

ular steps in the discretization process are not determined by a given solution algorithm. Rather,

the solution algorithm is dependent upon the discretization process. The Navier-Stokes equations

were derived in terms of conserving a quantity within an infinitesimally small volume. Thus, it is

considered that the control volume approach is more closely tied to the physics of the flow than

is the finite difference approach.

For incompressible, steady-state, axisymmetric flow there are four unknown flow field vari-

ables (v, ,v,,vs, and p) and four conservation equations, making the problem well posed. The

three momentum equations are used to solve for the velocities, and the pressure field is extracted

indirectly from the continuity equation. A fifth variable, the effective viscosity, p, must be eval-

uated in turbulent flows. Chapter 5 provides an explanation of the turbulence model used to

determine this quantity. If the flow is laminar, p is simply the molecular fluid viscosity, which is

a fluid property and is known independent of the flow. The solution algorithm is independent of
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the means for determining the spatially varying turbulent viscosity; thus, any turbulence model

may be used to approximate the effective viscosity.

In addition to the complexity associated with the nonlinearity of the momentum equations,

the appearance of the first derivatives of pressure in the relations causes additional numerical

difficulties. If central differencing is used to discretize the pressure gradient on a uniform grid,

the pressure at the central node becomes decoupled from the approximation to the momentum

equations. Referring to the uniform control volumes illustrated in Fig. 4.1, the gradients at the

central node can be expressed, using second-order accurate central differencing, as:

9pI PE - PW (4.1 a)
aý 2Aý
0P _ PN - PS (4.1b)a7 0 2At/

These relationships are referred to as "2 - V" gradients, since the component terms span two

control volume widths. Because po does not appear in Eq. 4.1, the pressure field experiences

"even-odd" decoupling, wherein a physically unrealistic checkerboard or oscillatory field can

satisfy the discretized governing equations (16, pp. 115-118]. The problem stems from the need

to use central differencing to evaluate the pressure gradients. One-sided differencing does not

accurately represent the elliptic nature of pressure, thus it is not a viable approach for eliminating

the even-odd decoupling. On a nonuniform grid the central pressure would appear in the central

difference approximations to the gradients. However, the coupling this provides is very weak and

only gets stronger as the grid becomes less uniform.

Staggered grids are frequently employed to alleviate the even-odd decoupling and prevent

an oscillatory pressure field. Scalar and vector component fields are solved on separate grids in

this type of treatment. The vector component nodes are offset in the direction of the component

by one half of a control volume width from the scalar nodes. Patankar and Spalding's SIMPLE

[19], Patankar's SIMPLER [20], and Issa's PISO [21] are a few of the algorithms that employ the

staggered grid approach. On a nonorthogonal grid, the gridlines are not along the coordinate axes,
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so the nodes cannot be staggered in the coordii.ate directions. Therefore, staggered grids cannot

efficiently prevent pressure oscillations on nonorthogonal grids [221. In order to use staggered

grids with curvilinear coordinates, Karki and Patankar [18) had to transform the governing

equations to reflect conservation in the direction of the computational plane axes. This approach

complicates matters without providing an exonerating computational advantage.

Rhie and Chow [11) proposed an algorithm which prevents the occurrence of an oscillatory

pressure field on a nonstaggered grid. Their algorithm, dubbed "the pressure-weighted interpola-

tion method (PWIM)" by later researchers Miller and Schmidt [23], combines "2- 6" and "1 - 6"

central differencing approximations to the pressure gradients to eliminate oscillations in the pres-

sure field. Like SIMPLE, PWIM is a predictor-corrector scheme, in which the continuity equation

is used to derive a pressure correction equation. The pressure corrector is used both to update

the pressure and to correct the velocity components to satisfy continuity. When convergence

is reached with this iterative solution scheme, both momentum and mass are simultaneously

conserved.

The reasoning behind Rhie and Chow's development will be discussed later, but the incen-

tive for creating this method is to eliminate the complexity and inefficiency of staggered grids.

Computational fluid dynamics techniques such as curvilinear coordinates and multilevel algo-

rithms, which have been actively researched in the years following the initial proposal of the

staggered approach, are cumbersome when applied to noncollocated grids. Nonstaggered grid

solvers generally require less storage than their staggered counterparts. Peric ei al. [24] found

that PWIM was usually fasztr than staggered grid methods, even without the SIMPLEC en-

hancement (see Section 4.4). Miller and Schmidt [23] demonstrated that the nonstaggered grid

solver is more accurate than staggered grid algorithms. Also, the accuracy of solutions obtained

using the I\WIM algorithm are not reduced by interpolation errors during post-processing, since

the flow quantities are already defined at the same points.
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The PWIM algorithm exhibits a robustness which is further enhanced by the transforma-

tion to generalized curvilinear coordinates and the use of the finite control volume formulation

to discretize the equations. The use of generalized coordinates allows the same computer code to

treat the vastly different geometries that appear in various types of turbomachines and fluid pas-

sages. A control volume approach, rather than finite a difference representation of the governing

equations, allows the discretized form of the equations to remain conservative.

Rhie and Chow's nonstaggered solution algorithm, PWIM, was chosen as the technique

best suited to solving the incompressible turbomachinery flows that are the subject of this work.

However, to optimize the flow solver to the particular applications, some changes have been made.

Most of them are based on the difference between cylindrical and Cartesian coordinate systems.

Since the initial publication of the PWIM algorithm in 1983, several researchers have proposed

minor modifications. Lapworth (22] has formulated a scheme in which pressure, rather than a

pressure correction, is computed. This variation is algebraically equivalent to the original PWIM,

where an error in continuity still drives the convergence of the pressure field. This approach was

not incorporated into the present scheme, because a change in pressure also enables corrections

to the nodal velocities to be made. Lapworth does not bother making updates to the nodal

quantities, since continuity is assured by updating only the facial convective velocities. However,

the minor computational expense incurred by updating nodal velocities according to the pressure

correction relationships yields a more robust algorithm. It is especially helpful in preventing

divergence early in the iterative process when the solution is rapidly evolving from the initial

guess towards a converged solution. By updating the nodal velocities, the explicit source terms

in the momentum equations are evaluated using more realistic quantities, and thus stability is

enhanced. Rhie and Chow [11) use linear interpolation in the physical plane to arrive at facial

values of the contravariant velocities. Lapworth [22] used simple averaging in the computational

domain. Miller and Schmidt [23] developed a more accurate, albeit costlier, approach that is

based on conservation of momentum. Their approach, which degenerates to simple averaging for
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some flow conditions, is adopted here, because it more accurately represents the physics of the

flow.

The remainder of this chapter is devoted to giving a detailed explanation of how the modified

PWIM algorithm is used to solve the discretized axisymmetric equations in generalized curvilinear

coordinates. The description begins with a statement of the nomenclature associated with the

grid and control volumes. This is followed by a discussion of how the governing equations are

discretized. To simplify the presentation of concepts which are pertinent to all three momentum

equations, the discretization is first carried out in terms of a general transport equation. Then, the

individual momentum equations are treated. As previously mentioned the discretization process

is not unique to PWIM. After it has been presented, the way in which PWIM is specifically used

to solve the discretized equations is discussed.

4.1 Control Volume and Grid Definition

Fig. 4.2 shows a typical control volume in physical space. Fig 4.3 illustrates the same control

volume when it is mapped into a unit square in the computational domain. Each of these figures

indicates the notation utilized throughout this work. The directions east, west, north, and south

correspond to various directions with respect to the central (o) node. An uppercase directional

subscript (E, w, N, s) refers to a quantity at a neighboring node. A lowercase directional

subscript (,, ,, ,, *) corresponds to a quantity evaluated on a control volume face. Repeated

directional subscripts indicate quantities in the direction of the latter subscript with respect to

that indicated by the first.

An entire grid in the physical plane is shown in Fig. 4.4. When the grid is generated,

only the coordinates of the control volume corners are computed. Vertical and horizontal face

coordinates (denoted in Fig. 4.3 by + and x, respertivcly) are positioned at the midpoints
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between adjacent corners. Nodes, indicated by circles in Fig. 4.4, are located at the intersection

of the line segment connecting the vertical face coordinates with the line segment connecting the

horizontal face coordinates. Additional nodes are placed on the grid boundaries for convenience

in implementing the boundary conditions. The size of the grid in Fig 4.3 is 11 x 9. The number

of nodes in the 4 direction, NNI, is equal to 11. The number of nodes in the 1 direction, NNJ, is

equal to 9. Nodes with indices i = 2 or NNI- 1 or j = 2 or NNJ- 1 have control volume faces

which lie on the boundary of the computational domain. These points are referred to as near

boundary nodes. By placing additional nodes along the boundary, iterative solvers can treat the

near boundary nodes without a change in programming logic.

The geometric relationships between the nodes and control volumes corners are described,

because the discretization process requires that assumptions be made concerning the flow field

distribution between a node and its neighbors.

4.2 Discretizing the General Transport Equation

For two-dimensional control volume formulations, the transport equw.tions are integrated

over the control volume area. In the computational plane this corresponds to integrating over

dA = d~d77. All of the conservation equations can be expressed in the form of a single general

transport equation:
8(prU,•) _ ( 0

i9p~O 9 rrJgjk '0) + S(f "7) (4.2)

The source term, S, contains ali terms not in the form of either the convection or diffusior. terms.

The differential form of the governing equation (Eq. 4.2) is integrated by assuming that

quantities are constant over control volume faces.

(prUCAr). + (prVOA#)' - (rrJg11i¢Ai?) - (FrJg22 ,,Aý)- = S (4.3a)



38

S=(rrigji ,Aj), + (PriJ9 2 i40(Ac) + fS(ý, Y7)Udd (4.3b)

Although the nodal separations, Aý and Aq, are equal to unity, they are explicitly retained in

the formulations to clarify the nature of the discretized equations. For convenience, the cross-

diffusion terms are absorbed into the source term on the right hand side of the equation. The

standard diffusion terms were brought over to the left hand side of Eq. 4.3a. The diffusive and

convective flux can then be combined into a total flux, F, as shown in Eq. 4.4.

(F -F.') + (F.9 --Fq) = S (4.4)

F, = (iiprUO), - (orrJgiif),, (4.5a)

F. = (ýprVO). - (PrJg 2 2 0,). (4.5b)

A specification of the total flux across the western and southern face is not given in Eq.

4.5. Due to geometric similarity there are often similar expressions which relate the eastern

and western, or ,orthern and southern, or eastern and northern, or western and southern facial

quantities. Throughout this work, whenever only two relationships are formally stated, those for

the remaining edges are found by evaluating the quantity using the relationship corresponding

to the face of geometric similarity.

The total flux terms in Eq. 4.5 are composed of a linear combination of convective and

diffusive fluxes. This form is desirable, because it allows for the solution of the transported

quantity despite the presence of multiplicative factors, such as U or V, which might be a function

of the transported quantity itself (this is the case for the axial and radial momentum equations,

where U and V are dependent on v, and v,). Eq. 4.5 is a solvable linear equation in €. Geometric

quantities appearing in the flux terms are fixed, known functions of the grid geometry. Fluid

properties are considered to bc known while the transport equation is being solved. Contravariant

velocities at the control volume face are known, as these quantities are used to satisfy continuity
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on the nonstaggered grid (this will be further discussed in Section 4.5). Any ,u. %tities that mnay

depend on the transported quantity are considered fixed while a particular transport equation is

being solved. When the iterative process converges, all of the coupling between 0 and the other

variables is incorporated into the multiplicative factors and source terms. The remainder of this

section explains how Eq. 4.5 is solved for 0.

The diffusive gradients are expressed with second-order accuracy on the uniform grid ac-

cording to the relationships shown in Eq. 4.6.

S= (4 - ) A (4.6a)

0,7. = (0N - 4)/)li (4.6b)

Evaluating the convective terms is a more difficult task, because it requires the knowledge of the

transported quantity at the control volume face (0e, 0,,). The transported quantity, however, is

only defined at the nodes of the nonstaggered grid. A variety of ways of using the nodal quantities

to approximate the facial value are discussed in the Appendix. The method used to express the

total flux in terms of nodal quantities is known as a differencing scheme or interpolation scheme.

Within the Appendix three new differencing schemes that were developed during the course

of this investigation are presented. One involves a revision to Leonard's QUICK differencing

scheme [12], and the other two were formulated to reflect the inherent differences between flows

in cylindrical and Cartesian coordinate systems. 7he reader can refer to the Appendix for a

complete discussion of these differencing schemes. For now, it is sufficient to say that they

determine how the transported quantities at the nodes are combined to give an expression for

the total flux at the control volume faces. The differencing schemes define the linear function in

Eq. 4.7.

,f = f(0o, OE, ... (4.7)

Linear equations for the total flux far each of the terms in Eq. 4.4 are combined to yield

Eq. 4.8.

(Ap - Sp)4io =4EOE + Awqiw + AN4)N + As$s + Su (4.8)
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The particular differencing scheme determines the values of the coefficients, A., multiplying the

nodal values. These coefficients contain the geometric, fluid property, and nonlinear factors

influencing the values of 4 at the nodes. Su contains all of the explicitly evaluated source term

integrals, while Sp corresponds to the dependent or implicit sources. Iterative solvers diverge

if the system is not positive definite, meaning the coefficients do not all have the same sign.

Therefore, care must be taken to make Sp negative. For stability purpcoses, Patankar [16, p. 491

suggests using the following relationships to break up a source term that is a simple function of

the transported quantity. If S is not a function of 0, then the entire source term is evaluated

explicitly.

ao€s,. = S( )

su = O(4.9b)

The five-point stencil format of Eq. 4.8 is chosen so that a variety of efficient iterative

solvers may be applied to the system. It is a linear system which results in a banded matrix that

can be efficiently stored and can also be solved using noniterative techniques. Gauss-Seidel or

Jacobi iterative schemes are suitable for systems in which the source term dominates. Because

convection transmits information in the direction of flow, the momentum equations are solved

more quickly by using a tridiagonal solver to solve the field column by column or row by row

sweeping from the inlet of the geometry to the outlet. The pentadiagonal system is turned into

a tridiagonal system by treating the eastern and western influences explicitly when viewing a

column, or by handling the northern and southern influences explicitly when isolating a row. For

stiff equations, such as the pressure correction equation which will be discussed in Section 4.5,

Stone's strongly implicit solver [25] can be used. The convergence rate of Stone's method does

not decay as quickly as other iterative schemes as a converged solution is approached, because it

treats the equations in a more implicit manner.
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Setting AO = Ap - Sp give .he general format of the linear system:

Aoo ko+l = + S'+ (4.10)
0

The superscript on the transported quantity corresponds to the iteration or time level. The

most recent, or current, level is indicated by a " k+I " superscript. The last point in the iterative

process where all the remaining quantities have been updated is denoted by an "s, superscript.

Implicit treatment is indicated by " k+1 . Explicit evaluation is shown by " " The subscript

under the summation sign denotes a sum over the eastern, western, northern, and southern

neighbors with respect to the central node.

The nonlinearity of the momentum equations may cause the iterative solution procedures to

diverge. Therefore, under-relaxation is used to stabilize the solution. The relaxation factor w,

where 0 < w < 1, specifies a fractional weighting between the new and old values, as seen in Eq.

4.11a. Eq. 4.11b shows the under-relaxed linearized equation.

Ok+ 1 = Z (•°A'•+1 ) + + (1- W)4O (4.11a)

=Ao~+ E~O+ + [."+ ý(I -w,)AoOOk-] (4.11b)
0

Now that the discretization process for the general transport equation has been discussed,

the individual discretized momentum equations can be obtained by substituting the velocity

components for 0 and introducing the relevant source term.

4.3 Discretizing the Momentum Equations

The discretized momentum equations are found by integrating the transformed axisymmet-

ric incompressible steady-state momentum equations (Eqs. 3.25-27) over the control volume

according to the method outlined in Section 4.2. The multiplicative coefficients, A,, are the same
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for all of the momentum equations, because they are a function of the •ontrol volume geometri,

the mass flow rate into the CV, and thc fluid viscosity. All three of these properties are the same

for each of the momentum equations. The under-relaxed momentum equations are expressed in

standard form in Eqs. 4.12-17. All of the pressure gradients are evaluated using known pressures.

Every viscous terr not matching the form shown in Eq. 4.5 is evaluated explicitly as part of the

source term. The centripetal and body forces are evaluated explicitly so Ao remains the same

for each of the three momentum equations. The terms SZ, S', and 58 are the integrals of source

term with the pressure gradients extracted.

ýAoo vk1 = -- AýAiiro((r,?pf)n - (r(p,7)") + (Sb + .(l - w)Aoo vno] (4.12)
0

±A 0 0ovk+1 = I Ai"Vk+, - ACAiro((z~p,7)' - (zpf)") + [9 0 + (1 - w)Aov~o]v (4.13)
I • _[0

ýAoo = Aiv,, + [s54 + ý(l - w)AoOov] (4.14)
0

Sb= (rJF)O~AiAq + (urJ9g2V,,A7I)', + (prjg2 1v, (C~ +

[Aqr~rj (r,7 (rv,1 v -f. - z,, (rv,,vr rv-,) +

[A,-rp. (-r( (r,v., - ,,,) + zt (r,,v,., - ,-.,))1. (4.15)

SO (jPV2) 0 ACA1 + (rJF,)OAýAii +

(prJg1 2 v7 .Ari)', + (prJg2 vr, AC)" + (J2pMv/r)oý?7 +

["i"r'. (r, (-:-,,v•. + z~v..) - :,, (-e,,,. + +

(A•,.uý (-r( (-z_,,, -+ rfvz,) + +- (-:,7 v,,. + (4.16)

SO = -(Jpvvo)o AAY7 + (rJFe)oAŽAq +

(prJgi2 veAi7) + (prJg2 1V6,A')' e~7-,(r(+z(r) 0 (.7
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Eqs. 4.12-14 each constitute a system of linear equations, where each CV con.ributes an

equation to the system. The solution of each set of equations is referred to as an inner loop,

because it is assumed that all quantities but the relevant one are fixed. In contrast, the outer

loop iteration is comprised of all the steps that are taken to update each and every flow field.

The remainder of this section outlines the steps comprising PWIM, listing the order in which

the flow fields are updated within a particular outer loop iteration. This list is not detailed. Its

purpose is to initiate the reader to the overall approach used to solve the governing equations.

1. Begin with an initial estimate fc the flow fields.

2. Solve the momentum equations using the known values to construct the multiplicative coef-

ficients and the source terms.

3. Calculate new values for the facial contravariant velocities (discussed in Section 4.4).

4. Use the failure of the velocities from Step 3 to satisfy to continuity to arrive at a correction

for the pressure (discussed in Section 4.5).

5. Use the pressure correction from Step 4 to correct the facial contravariant velocities so they

satisfy continuity, and to correct the nodal velocities (discussed in Section 4.5).

6. Return to Step 2 until convergence is reached.

Solving the momentum equations does not lead to the correct velocity distributions unless

the correct U, V, and p fields are known. Iterating between Steps 2 and 6, referred to as cycling

over the outer loop, drives the solution toward convergence. As a better pressure field is returned

from Step 4, the successive velocities in Step 2 will violate continuity by a smaller degree. This

continues until eventually at all of the governing equations are satisfied.

4.4 Pressure-Weighted Interpolation of Facial Contravariant Velocities

It is evident from the equations in the previous sections that the values of (U, V) are needed

only at the control volume faces. This section is devoted to explaining how these quantities
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are evaluated. Each of these contravariant velocities is a function of v, and v, on the CV face.

However, the cylindrical velocity components are known only at the nodes. The momentum

equations are used to arrive at accurate expression for the nodal velocities, so Miller and Schmidt

[23] extend this idea and state that an accurate expression for the facial velocity can be determined

by formulating the momentum equation about the control volume face. The axial momentum

equation expressed at the nodes surrounding the eastern face and at the face itself are shown in

Eqs. 4.18-20.

-LAoov'j 1 = ZAivk+ AvAj ro((r,,pf )n - (rf pq)n ) + [SO' + ý (I -,) A o,,v" ) (4.18)
0

ýAo v+, =- .,v-- k 1 - A qAr rE((r,7pf)" - (rp,,)') + [Sý + ý(I - w)AoEv'E] (4.19)
E

•A 0  ~vk+ = ZAjvk - r.((rupO - (rfp,,))+ [S + ý(l -w)Ao.v' (4.20)
e

Two types of gradients are present in these equations; pf I is a "1 - 6" gradient and pf I"O,

are "2 - 6" gradients. The appearance of both types of gradients is the key to the success of

PWIM. Together, they are used to eliminate the occurrence of oscillating pressure fields that can

appear on nonstaggered grids.

Eq. 4.20 shows the momentum equation expressed about a cell face, and it contains coef-

ficients calculated at the face. These cell face coefficients are not known. Miller and Schmidt

suggest using the following relationships to approximate their values.

E,, -(, 1 1 "' + (4.21a)
AO. 2 A 0 0  AOE

1 + (4.21b)

Ao. 2 A 0  or

In the cylindrical coordinate system, surface area is directly proportional to the radius, so

as the radius increases, velocity must decrease in order to conserve mass. Miller and Schmidt's

approximation reverts to the assumption that each nodal velocity equally contributes to the

value at the face. However, as stated in the Appendix during the discussion of the differencing

schemes for cylindrical flow applications, a better assumption for axisymmetric flows is to use
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radial weighting to determine the relative contribution of the nodal values to the facial quantities.

Thus, in the current cylindrical adaptation of the PWIM algorithm, the following approximations

are made:

Av l_*1 ~r, CAi 'k+I I (roZo4- Vk+I rE ,E Aiv,,
-' 2 = ... AZ' -+ A_ Z (4.22a)Ao, A0 AAo,

Ae = - + (4.22b)A.Ao, 2o.

Substituting these approximations into Eqs. 4.18-20 results in the following expression for

V! =(I -w)v- + ((rov(- + rE( )(rOV + rEv' )) /(2r,) +

A + jr "o "
wA•A, (.Zoro" ((r,?p)", - (rfp.,)") + A--r . ((r,•pt) - (rp,,))')-

2r, GOO0 AoE E/

wAvt 1 -•-L. ((r,~pC); - (rcp,);) +

-ss + sE ) (4.23)
Ao- 2rek Ao +

The radial momentum equation at the eastern face is handled is a similar manner.

v•+. (1 -w)v + ((ro, + rEVk+')- (-w)(rOvo + rTvEv ))/(2r.) +

2 . rAo0 o Ae P
0 A-A,7 n-"-e ((zrp,,) - (:-,pC) ) +

, o. (4.24)

The other faces are treated in a similar manner.

Substituting Eqs. 4.23 and 4.24 into Eq. 3.15 yields the expression for the contravariant

velocities in terms of facial and neighboring nodal values. Making the approximation that the

facial coefficients (Eq. 4.22) are a function of radius results in an expression for the contravariant

velocities that is consistent with the cylindrical convection approximation that is outlined in the

Appendix.
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U. =(1 - - ( - w) (r,7.(rov' + rEv") - z,.(rov., + rEt.E)) /(-r.) +
klkl k+1(r,.(ro v' + rE',+) - Zv?.(rEVr+o + rgv'+))/(2r,) -

w/~i ,-~--" ((z: + r2.)pc17 - (r.. r. + -:..f.)pr In) +

w 2A L Aoo ((:qz, 70" + V,7 r,7°)P~l• - (r"hrco + z"z°)n• +

W rEA7 - - ((zL,, + r,. 5 ,)Pd)-- (r,.r(o +-',. zý)p,7j") +2r,! Ao,

W- (r ,.s - :,.•) -

W '--. (r,.So - :,.So) + E r(..sý - Z1.9) (4.25)

Vn =(I - w)V, - (I -,w) (zf.(rovi' + rNv'N) - r(.(rov'0 + rNV N)) /(2r,) +

(zf.(rovr' + NVrZk+ 1 ) - (rov + rNv+'))/(2r.)

W-AýA7r' ((z +r 2)P,7 In - (zCz). + re,.r,,p-(z In) +
A0-. C. - n

wAA7
2 --- ((zzo + q~. r(,)p,, In -- ,7 + r(.r,10 )pf In +

2rn Ao,(z( -(

,,,A71-L- N((zf~zf, + rf. rfN)p,, I', - (zf.z,,N + rf.r,?N)pf In +

(z(. go--( (. Sb) + '--(zc.-9- rf.S)) (4.26)

Because the facial source terms would require excessive computational effort to evaluate,

the underlined terms are assumed to cancel. This approximation is equivalent to an assumption

that the contribution of the facial source term to the contravariant velocity is equal to the

average contribution of the nodal sources. Dropping only these terms is more accurate than the

simple averaging used by Rhie and Chow [11] and Lapworth [221 to evaluate the facial velocities.

There are both "1 - 6" and "2 - 6" pressure gradients forming the contravariant velocities. If
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any oscillations arise in the pressure field, the difference between the gradients acts to remove

them. As previously mentioned, the Ao coefficients are the same for both the axial and radial

momentum equations. Therefore, they can be combined without having to distinguish them in

the equations for the contravariant velocities.

Miller and Schmidt (23] have warned of the possibility that an incorrect development of the

contravariant velocities can lead to a solution which is dependent upon the relaxation factor, W.

Dividing Eqs. 4.25 and 4.26 by w and canceling terms which are equal at convergence shows that

the formulations are independent of the relaxation factor.

4.5 Pressure Corrector Eauation

The manner in which the velocities are determined has been explained, leaving the pressure

as the only flow field variable for which a relationsip must be derived. This sections explains

how the continuity equation is used to determine the pressure.

The discretized control volume formulation of the continuity equation is:

(prU~r7), + (prVAý)n 0 (4.27)

If the pressure field at a particular level during the solution procedure is incorrect, then U

and V will not satisfy continuity. Therefore, a correction is needed. Corrections refer to changes

in quantities between particular iteration levels. The quantities which are corrected are given in

Eq. 4.28, and the levels to which the corrections correspond are indicated by the superscripts.

S=k++ ' (4.28o)

tn+1 =k +V V1

Un+1 = Uk+1 + U' (4.28c)

Vn+1 = V- +1 + V' (4.28d)

pn+1 = p" +p, (4.28e)

,m • p
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If the axial and radial momentum relations, Eqs. 4.12 and 4.13, are expressed at the corrected

and uncorrected time levels and then subtracted, expressions for the corrections to v,, and v,,

arise. The source terms completely cancel out of these relations, be,-!se they always involve

quantities at time level n.

ýAoov',o = EAjr" + AýArqro (-(ryp')o + (rfp,')o) (4.29)
0

.Ao,,;o = E Av'., + A(Aro (-(zfp',)o + (z),p')o) (4.30)

In the SIMPLE algorithm, the Eo Aivt terms are neglected. But, such a treatment requires

under-relaxation of the pressure update, because the neglected terms make up a significant por-

tion of the overall correction equations [16, p. 128]. Van Doormaal and Raithby 126) proposed

the SIMPLEC modification in an effort to improve the ability of p' to correct the pressure field

without affecting its ability to satisfy the continuity equation. In this algorithm the magnitude

of the neglected term is lessened by subtracting Zo Aiv' from each side and then ignoring the

resulting net summation over the neighboring nodes. The final step in formulating the velocity

coriections is to make the following approximation:

AoO = EA, + ,m. : Ai (4.31 a)
o 0

ýA 0o - E A=(1 - w)Ao, (4.31b)
0

This approximation is not exact, even at convergence, when the cylindrical differencing schemes

are used. However, this does not affect the final results. The velocity corrections go to zero at

convergence, so it does not matter how the interim results are reached.

The corrections to the axial and radial velocity components are given in Eqs 4.32 and 33.

The tangential velocity component, ve, does not enter into the axisymmetric continuity equation,

so it requires no correction.

wAýA77

, (1- w)A 0 o ro (-(rp()o + (r•p,)o) (C32)

'o= - ro (-(Zfp,,)o + (:np,)o) (4,33)(1 - AO
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When the SIMPLEC modification is used, a fully implicit (w = 1) solution to the discrete

linearized momentum equatioas cannot be made. With w = 1, the quantity that is subtracted

from each side of Eqs. 4.54 and 4.55 is equal to the left hand side of the same equation. This

makes the system homogeneous, and the resulting velocity correction field trivial.

Van Doormaal and Raithby report that SIMPLEC, compared to SIMPLE and SIMPLER,

significantly decreases the amount of time required to solve the governing equations. The en-

hancement to PWIM proposed by Acharya and Moukalled [27] was not adopted, as the savings

they reported were not as dramatic.

Expressions for the nodal velocity corrections have been derived, but it is the facial con-

travariant velocities which appear in the continuity equation. Equations for the correction of the

cylindrical velocities at the faces are given in Eqs. 4.34-37. The relationships for these corrections

are derived using the same logic that produced the corrections for the nodal velocities. Eq. 4.22b

is used to approximate Ao. and Ao,..

vt = wAýArr, T r

" (. -(1 ) AC* (-( p')e - (r~p',),) (4.34)

Vt = wACArt r(
V. (1 - w) Ao. (-(Zcp ), + (Z,1 p)c) (4.35)

V, wA.Ar7 r, 4.6=( -W) AO. (_(rp7P')- + (rp,,)t.) (4.36)

" = (I - w) Ao. ( (4

Evaluating p'l, and K- is less convenient than evaluating p'j, and p' due to the nonstag-

gered nature of the grid. Therefore, the former terms are omitted from the correction equations.

This omission has no effect on the converged solution, since the correction terms are zero at

convergence.

Converting the cylindrical velocity components into (U, V), via Eq. 3.15, gives the form of

the contravariant velocity corrections used in the present scheme:

u; = r,. (Z 2 +r .)p•l, (4.38)
(1 -w) Ao. 17- `

VI = ___ r,, (Z + r2) P'.1. (4.39)(I - w Ao.
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The pressure correction equation is formulated by substituting Eqs. 4.28c-e, 4.38 and 4.39

into the continuity equation.

Aoop = AP p'E + AP p'• + APP p' + A p's + SUP (4.40)

AP = pA_ r2_AZ,.2. + r2.) (4.4 1a)
A~ v = A , A, A , o . r17•

AP = AP + AP + AP + APS (4.42)

SU= -(1 - w)[(ArprU), - (Ar/prU), + (A~prV) -- (A•prV),] (4.43)

Continuity is satisfied at convergence, at which time the pressure correction equation becomes

homogeneous and all corrections are zero.

The pressure correction equation yields a stiff linear system. Iterative solvers are slow to

converge, making the solution difficult to obtain. Banded matrix solvers can be employed to

find the solution, but their lower/upper decomposition has memory requirements on the order

of 2 x NNIx NNJ 2, and the solution time for large grids is very long. Despite these problems,

the flow solver will still converge if only a partially converged solution to the pressure corrector

equation is found during the iterative process. A few sweeps of Stone's method gets the p'

field going in the right direction, sending the velocities towards continuity-satisfying fields. This

holds for all but the most drastic cases. If the momentum equations are utilizing an unrealistic

pressure field, the resulting velocities may give large mass sources. Should these mass sources

not be made sufficiently small, the perturbation to the velocity field may cause the solution

to diverge. Flows in which centripetal forces come into play are especially susceptible to this

phenomenon, because these terms are not lessened by a Reynolds number in the denominator nor

are they differenced across a control volume. In such a situation, simply increasing the number

of sweeps of the Stone solver will not necessarily alleviaýc the problem. This is because the ate
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of convergence decays as all of the high frequency errors are removed [28]. During this res'earch it

was found that turbomachinery flows, which contain centripetal acceleration effects, compounded

by recirculating flow regions, and added instabilities caused by the sudden introduction of body

forces in portions of the flow domain, required the use of a direct solver. This maintained realistic

velocities throughout the iterative process and prevented the bolution from diverging.

4.6 Boundary Conditions

Boundary conditions (BC's) make the solution to the governing equations unique, and one

of the chief advantages to using body-fitted coordinates is that the BC's can be acciwately

enforced. Each type of equation has its own proper boundary conditions, as determined by the

flow geometry and conditions. This section explains how the BC's are incorporated into the

formulation of the discretized equations. Care is taken to ensure that the initial guess of the

pressure and velocity fields satisfies the boundary conditions.

4.6.1 Mcmentum Boundary Conditions

The flux through the CV faces which lie on a boundary is evaluated by applying the boundary

conditions. Thus, for near boundary nodes, the coefficient in the direction of the boundary is set

equal to zero, and the differencing scheme contributions to the central coefficient come only from

faces that do not lie on the boundary. ThI boundary concitions are enforced after the initial

formulation of Ap and A1 by supplementing the central coefficient and source terms according

to the particular boundary condition.
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There are as many equations in the linear system as there are control volumes on the grid,

but the number of unknowns present in the discretized stencils is equal to the number of nodes.

The system becomes well posed by considering the boundary v'alues to be known for a given

outer loop iteration. Setting the coefficients that multiply them to zero removes the boundary

nodes from the stencil, but this essentially alters the equation that is discretized. Modifying the

source term and central coefficient returns the equation to proper form and allows it to reflect

the proper BC.

There are four boundary conditions which arise in through-flow calculations: no-slip wall,

plane of symmetry, parallel outflow, and specified velocity distribution. Each of the boundary

condition (BC) modifications that follow are given for the eastern and western boundaries without

loss of generality.

Two of the BC's are implemented in identical fashion. During an)y given outer loop iteration,

both the transported quantity and convective flux are known on a no-slip wall and on a specified

velocity boundary. Therefore, the convective portion of the flux is treated explicitly. The diffusive

flux component is approximated using a second-order Taylor series expansion. This truncated

series consists of three nodes; the central one is handled implicitly by moving its contribution

into Ap, and the boundary and opposite boundary terms are placed in SU for explicit treatment.

The symbolic implementation of these BC's is given in Eqs. 4.44 and 4.45. The sign of the

convective term supplementing Su is dependent on the boundary in question, because positive

flow through the face can mean either mass flow into or out of the control volume.

AE = 0 (4.44a)

Ap = Ap + 3D, (4 44b)

Su = Su - Ce.OE + D,(8¢E + 0w)/3 (4.44c)

A = = 0 (4.45a)

Ap = Ap + 3D,, (4.45b)

SU = Su + C,,(PE + D.(86w + 6E)/ 3 (4.45c)
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On a plane or line of symmetry, both the convective flux and the diffusive flux are known.

The diffusive flux is zero, because the gradient of the transported quantity normal to the plane of

symmetry is zero. The convective term is also zero since no flow may cross a plane of symmetry.

Therefore, no changks in the coefficients are necessary to implement this BC.

For the exit boundary, the assumption is usually made that the streamlinen of the flow are

straight and normal to the exit plane. This means that t.he gradients in th ..,eamwise direction

are zero (& = 0). Quantities on the outflow face are simply those at the node upstream of the

boundary convected to the boundary.

AE = 0 (4.46a)

Ap = Ap + C. (4.466)

In many flow cases the outflow boundary is a nonphysical boundary which was defined to make

the computational domain either finite, or small enough to allow solutions within reasonable

computational times. When this boundary is not real, it must be placed such that the chosen

boundary conditions will not unduly influence the flow in the region of interest. For the turbo-

machinery calculations that were made during this research, a straight extension was added to

the physical domain, which allowed the flow to achieve a negligible level of streamline curvature

at the exit boundary. This extension was long enough to allow the closure of any recirculating

regions which may have developed. No stable BC was found that could be applied to an exit

with reversed flow. Therefore, the effective viscosity had to be increased in the neighborhood of

the exit to allow separated flow to reattach.

When the outflow direction has a radial component to it, the change in area makes the

_ 0 assumption invalid. Therefore, this type of boundary is considered to be a specified

velocity boundary during a particular outer loop iteration. However, at high Reynolds numbers

this leaves the Ap coefficient upwind of the boundary without a convection term to supplement it.

Thus, the central coefficient goes to zero, which causes divide by zero errors. To prevent this error
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from terminating the execution of the program, without affecting the converged results, C,0o

is added to each side of the equation. One side is treated explicitly and the other implicitly,

according to Eq. 4.47.

AE = 0 (4.47a)

Ap = Ap + 3D, + Ce (4.47b)

Su = Su - COB + D,(80-E + €w)/ 3 + C,€o (4.47c)

After the momentum equations are solved, the outlet flow quantities are calculated so as to

enforce global mass conservation. Physically, no mass may accumulate in the flow field domain,

but this may not be the case for intermediate solutions. The net mass flux through the inlet,

upper, and lower boundaries is calculated, as is the mass flux past the gridline just upstream of the

outlet boundary. The outlet contravariant velocity is then calculated according to the relationship

shown in Eq. 4.48, which ensures zero net mass flux into the domain. At convergence, the ratio

of mass flux into and out of the grid is equal to unity, so (prU), equals (prU),. This is consistent

with the parallel outflow boundary condition, as well as the cylindrical upwind approximation

that is discussed in the Appendix.

U.! = (p,,U,)(,h,.Ira.)/(pr,') (4.48)

The cylindrical velocities at the outlet are found using the inverse of the definition of the

contravariant velocities, as given in Eqs. 4.49 and 4.50. The 77 contravariant velocity component,

V, equals zero, because the outgoing flow is normal to the exit plane.

v, = (.- U + z" V)/J (4.49)

Vr = (r U + r,V)/J (4.50)

The tangential velocity component does not appear in the continuity equation, so the angular

velocity at the exit is set equal to the near outlet ve times the ratio of the near boundary radius
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to the boundary radius. This is equivalent to conserving angular momentum in the absence of

viscosity.

At a plane of symmetry, v, is updated at the end of each outer loop iteration. A second-order

accurate Taylor series expansion is used to evaluate v, such that the gradient of v, nor..,dl to

the plane of symmetry is equal to zero.

4.6.2 QUICKR Boundary Conditions

QUICKR (see Appendix) is treated in a manner identical to the other differencing schemes

when it comes to implementing the boundary conditions. The flux through the boundary is

not allowed to contribute to either the central or neighboring coefficients. However, this does

not mean that the boundary coefficients are zero, since the differencing scheme for the CV face

opposite the boundary is dependent on the boundary value.

Because the BC's are placed into the central coefficie, t for both the higher and lower-order

differencing schemes, the QUICKR source term, SQ, must be calculated before the BC's changes

are incorporated into Ap. Otherwise, the BC's will be removed by the (AH - AQ) term in SQ.

4.6.3 Pressure Corrector Boundary Conditions

Boundary conditions for the pressure corrector equations are enforced by setting the bound-

ary coefficients equal to zero. The mass flux at a boundary is a fixed quantity during a given

outer loop iteration. This is necessary, because there are no additional conservation equation

from which the flux can be computed. Thus, the mass flux evolution must lag the velocity calcu-

lations, unless it is initially specified as a given boundary condition. Consequently, the boundary
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mass flux does not require a correction. If the correction at the boundary is zero, then the pres-

sure gradient normal to the boundary must also be zero. Therefore, the boundary node does not

appear in the stencil, and the pressure corrector boundary conditions are enforced by setting the

boundary coefficients at the near boundary nodes equal to zero.

In incompressible flow the pressure field is unique to within an additive constant. Therefore,

the system of linear p' equations is underdetermined. Iterative solvers will still converge on this

type of equation set. Patankar [16, p. 131] states that iterative solvers converge faster if allowed

to seek their own level than if pressure at a particular node is fixed. Direct solution procedures,

such as banded matrix algorithms, cannot handle underdetermined systems, so the pressure must

be specified at one node. The particular node and the pressure level it is given is immaterial

since the whole field can be referenced to any pressure after the final solution is obtained.

4.7 Steps in the PWIM Algorithm

Now that the modified PWIM algorithm developed during this research has been thoroughly

explained, a more detailed list of the steps in the solution process is given. This list provides the

reader with an outline of the architecture of the computer program.

1. Read in a grid that covers the physical domain.

2. Map the grid into the computational plane, calculating the transformation metrics and the

Jacobians at the nodes and control volume faces.

3. Make an initial guess of the velocity and pressure fields.

4. If the flow is considered to be turbulent, use the turbulence model to evaluate the effective

nodal viscosities. Use the harmonic mean interpolation to calculate the facial viscosities.

See Chapter 5 for details.

5. Conserve momentum.
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a. Calculate the integrated momentum source terms.

b. Supplement the source terms with the pressure gradients.

c. Evaluate the momentum equation multiplicative coefficients, using the desired differ-

encing scheme.

d. Implement QUICKR differencing if desired.

e. If a through-flow calculation is being made, use the blade model to evaluate the flow

angles and resulting body forces for the nodes within the blade region. See Chapter 6

for details.

f. Implement the boundary conditions.

g. Calculate the residuals of the momentum equations.

h. Under-relax the momentum equations.

i. Begin the calculation of the facial contravariant velocities using the current pressure

and velocity values.

j. Solve the momentum equations to yield new velocity fields.

k. Complete the calculation of the facial contravariant velocities using the newly deter-

mined axial and radial velocities.

1. Calculate the outflow velocities.

6. Conserve mass.

a. Calculate the pressure corrector equation coefficients.

b. Calculate the mass sources and the source ;erm for the pressure corrector equations.

c. Solve the pressure correction equations.

d. Update the pressure field.

e. Update the facial contravariant velocities.

f. Update the nodal axial and radial velocity components.

g. Update the plane of symmetry velocities.

7. If convergence has not been reached, return to Step 4.
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Turbulence Model

The thin layer approximation algebraic turbulence model of Baldwin and Lomax [29] was

adapted to estimate the turbulence effects in the axisymmetric flow. Originally proposed to

handle separated flows in Cartesian coordinates, the model was formulated by assuming a priori

that the layer of fully turbulent flow near a vorticity generating wall is thin. The justification for

this assumption is that the number of nodes required to properly resolve the actual streamwise

diffusion is so prohibitively large that the highly stretched control volumes that are typically

placed about the boundaries yield to this assumption by default. In so far as the high aspect

ratio control volumes prevent the resolution of the true streamwise gradients, Navier-Stokes

solvers contain the thin layer approximation at high Reynolds numbers even though they are not

explicitly coded in this manner.

One of the chief advantages realized by using this model is that knowledge of the boundary

layer thickness is not needed. For the complex geometries and separated flows associated with

turbomachinery, automating the boundary layer thickness calculation within the flow solver is

exceedingly difficult. Baldwin and Lomax proposed using the distribution of vorticity as an

indication of the length scale associated with the boundary layer. In convection dominated flow

domains vorticity is neither created nor destroyed, but diffusion increases near the wall in physical

situations, generating vorticity.

The algebraic model, while not as rigorous as the two equation ic-e model, is more reflective

of the actual physicr than zero equation mixing length models. Actually, the model of Baldwin

and Lomax does make use of the mixing length formulation, but the specification of the eddy size
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is not done a priori. Because of the severe problem dependence limitations of the K - C model

and the amount of CPU time its use entails, this scheme was dropped in favor of the simpler

algebraic model. A brief survey of publications in the field of turbomachinery CFD shows that

the Baldwin-Lomax scheme is a widely used turbulence model [9,22,30).

The Baldwin-Lomax model utilizes a number of nondimensional constants, the values used

by the originators of the model are:

A+ = 26

Ccp = 1.6

CKLEB = 0.3

CwK = 0.25

k = 0.4

K = 0.0168 (5.1)

Schlichting [17, pp. 602-6041 uses the values A+ = 26 and k = 0.4 when calculatiug flow over a

flat plate and when calculating axisymmetric, turbulent pipe flow. In this research this proposal

is extended so that all of the parametric constants used in the Baldwin-Lomax model are the

same for flows in both axisymmetric and Cartesian frames of reference.

Baldwin and Lomax modify the dual-layer algebraic eddy viscosity model of Cebeci to pro-

vide a means of determining the turbulent viscosity. Two layers, the inner and outer, are assumed

to exist along the boundary, each region having a particular formulation for viscosity. Depending

upon the region in which the node lies, the viscosity is calculated as:

S= : Y crojove (5.2)
L,/2**,,,., Y :ý' YC9,0o00oee

The parameter y is the distance normal from the wall to the node, and ycro,,oter is the smallest

value of y for which the inner and outer turbulent viscosities are equal. The value of ycro,,over

cannot be determined analytically. By inspection, the inner turbulent viscosity (Eq. 5.3) is



60

identically zero on the wall (y = 0), while pg.... (Eq. 5.11) is not. Therefore, the transition

from inner to outer is marked by the point where the value ofpt... first exceeds that of/fi ......

In the interior region, the Prandtl-Van Driest mixing length formulation is used; the nondi-

mensional form of which is:

pg Re pft i1I (5.3)

t = k y (I - exp (-yI/A+)] (5.4)

r- = pw I (5.5)

+ =I y(5.6)

!I-W IV t i7l (5.7)

The eddy viscosity mixing length is represented by £. The Reynolds number appears because

nondimensionalized quantities are used throughout the description of the turbulence model. A

" subscript denotes a quantity evaluated at the wall. As previously stated, the turbulent

viscosity at the wall is zero; thus, pu, is equal to the laminar viscosity. The wall shear, r•, is

equal to the product of the wall viscosity and the derivative of the velocity parallel to the wall,

u, with respect to the distance from it. If the local inclination of the wall with respect to the

horizontal is a, then the expression for this derivative is given as follows:

u = v, cosa + v, sin a (5.8)

au a. au Or Ou

agu a U
= -sin OrT + cOs aOf (5.9b)

8r
1 9 sin a + zf cos a) (5.9c)

Since the no-slip wall is mapped into a line of constant q1, the derivative of u with respect to ( is

equal to zero. Thus, it drops out of the expression as Eq. 5.9b is transformed from the physical

to computational domain.
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The magnitude of the vorticity, Iwi, in axisymmetric flow is given by Eq. 5.10.

V( awo, _ , +V -V) +(•
IWI = +k~ (r +( -2__ ( 1~ ) 2 (5.10)

Expressed in terms of computational space derivatives, the magnitude of vorticity is a function

of eight different gradients.

1[ / N ,, 49v, L9 , 0 _V. 2

1w1=7 ( T -- ' -- 5z 2 +

/ OVa avc 2] (5.11)

The formulation for the outer region turbulent viscosity is given in Eq. 5.12. The Klebanoff

intermittency factor, FKLEB(Y), is calculated using Eq. 5.13. The multiplicative factor, FWAKE,

is evaluated according to Eq. 5.14. This factor is a function of the difference between maximum

and minimum total velocities within a profile, uDIFr. Typically, the minimum velocity is zero on

the wall and UDIF can be set equal to the maximum speed. A profile is defined by the group of

nodes within a particular column of control volumes all closest to the same wall. Within a given

profile, Fm,. is the value of F(y), Eq. 5.16, at its first local maximum away from the wall. The

value of y at which that maximum occurs is referred to as ymox.

,.,.. Re K cC p FWAKE FKLEB(Y) (5.12)

FKLEB(Y) = + 5.5 YCKLEB (5.13)
Ymar

FWAKE = mini ymo: Fronr, CWK ymo: UDIF/Fm.r] (5.14)

FV22 + Vr2 +, V+021lMa.Z- VV'2 +VT +V;0,21-"
UDJF tv+~ + V?+ J' iin (.5

F(y) = y I-I [1 - exp (-y+/A+)] (5.16)

Since the maximum value of F(y) cannot be found analytically, the exact location of the

transition from the inner to the outer layer cannot be evaluated before the inner and outer
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viscosities are calculated. Therefore, p,,c, and Po.t., must be compared to determine the

region in which the nodes lie.

As F(y) can only be evaluated discretely, there is a possibility that the maxima may vary

widely from one profile to the next. To smooth this variation, Baldwin and Lomax recommend

using a quadratic fit to the points about the maxima and extracting Fma. and y,,,, from the

curve fit. This parabolic fit is done as long as F,,mat does not occur at the endpoints of the profile.

Using the aforementioned relationships, the net viscosity, Porm +jus, is found at each node.

Because the discretized form of the momentum equations requires the viscosity to be known at the

control volume faces, the nodal viscosities must be used to estimate these quantities. Patankar

[16, pp. 44-47] suggests using the harmonic mean of the nodal values as the interface value. This

assures a more accurate description of the flux across the face. The harmonic mean is calculated

using Eqs. 5.17 with the relationships shown in Eqs. 5.18 used to calculate fe and f" in the

computational plane. The total, rather than turbulent, viscosity is interpolated because it is the

net viscosity that appears in the momentum equations, not pt by itself.

/i fe fe Y (5.17a)
= P0U PE/

An (1 f. + f y 1  (5.17b)

f. = 2V,&--2 I / i/A r2+ N= Vt2 21.z( + ( .ls2
2 z+rj/ z~rj (5.18a)

Baldwin and Lomax state that grid nodes must be placed within the inner layer, and suggest

that the first node away from the wall be located such that y+ - 2. Failure to place nodes in

the inner region results in a near zero turbulent viscosity throughout the profile. Since y+ is
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proportional to the square root of the Reynolds number, the nodes must be closely clustered

near the wall for high Reynolds number flows.

A simple method was used to determine how far to place the first node from the wall (31].

For fully turbulent flow on a flat plate the wall shear is proportional to Re.-'/ 5 , where the length

scale in Re, is the distance from the leading edge, z. Solving for the velocity gradient in r. in

terms of the nondimensional variables gives the empirical relationship shown in Eq. 5.19 [32].

au = 0.02885 Re / Re/ 5  (5.19)
ayV

The gradient at the wall is evaluated as the ratio of Au to Ay, and Ay is equal to y at the first

node from the wall. Re, can be expressed as the product of the flow Reynolds number and the

ratio of the distance from the leading edge, z, to the plate length, If.. The boundary layer grows

slowly, at a rate proportional to .lx7fp, so the thickness at the midspan is representative of the

boundary layer thickness across the entire plate. Manipulating the equations, and substituting

x/tf; = 1/2 gives the distance from the wall for the second row of nodes.

y - y+Re-9/ 0 -2-85 (5.20)
0402885

To capture the true boundary layer profile, it is necessary to place a number of points within

the inner region. Transition from the inner layer to the outer layer occurs at y+ - 50 [29], so a

rough estimate of the inner layer thickness is found by assuming Eq. 5.20 holds all the way to

the crossover point.

Without sacrificing accuracy, computational efficiency is increased by applying the model

only during intermittent outer loop iterations. This does not change the converged results, but

it lessens the significant expense of implementing the turbulence model.
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Blade Model

The ways in which convective, diffusive, and pressure influences on the fluid motion are

calculated have been explained in previous chapters. Within turbomachines, blade rows, which

are external to the fluid, join these factors in determining the fluid dynamic characteristics. In

the following sections, the method of quantifying how the blades influence the flow is presented.

Axial symmetry has been assumed to this stage, but as will be discussed, the loading of the blade

can be used to approximate nonaxisymmetric effects.

The focus of the present research is on calculating the flow in a mixed-flow centrifugal

impeller. The blade model presented in the following sections reflects this type of turbomachine,

but the approach is valid for axial flow as well as radial flow turbomachines. Also, the approach

is not limited to use with single blade rows or single-stage turbomachines.

The effects of blade are introduced into the momentum equations via the body force terms

in Eq. 4.15-17. As mentioned in Chapter 1, these forces are only applied to control volumes

which lie within the region in which the blades are projected onto the axisymmetric plane. To

facilitate the distribution of the body force and to help determine which control volumes are

actually in the projection of the blade, referred to as control volumes that lie on the blade, a

restriction is placed on the grid when calculating turbomachinery through-flows. Gridlines must

be placed along the projections of the leading and trailing edges onto the axisymmetric plane.

Thus, every control volume lies either entirely on or entirely off the blade. Body forces appear

in the momentum equations in dimensions of force per unit volume. The volume of a CV is
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calculated by combining the volumes of the conical frustums formed by the sweeping the CV

faces around the centerline.

An overall outline of the blade model is given in the following list. It is provided to give the

reader a sense of the approach used, resulting in a better understanding of the explanations of

the individual steps in the remaining sections in this chapter.

1. Convert the blade geometry to a form usable )a the grid.

2. Approximate the degree to which the blade fails to turn the fluid tangent to its surface at

the trailing edge. This is used to determine the blade loading near the trailing edge.

3. Specify a mean streamline in the blade-to-blade plane. This is used to determine the amount

that the blade must turn the flow.

4. Determine the tangential velocity and tangential body force required to keep the flow along

the specified streamline.

5. Estimate the static pressure rise along the blade

6. Determine the radial and axial body forces required to conserve momentum in the meridional

direction and provide the estimated preo3ure rise.

6.1 Representation of the Blade

The geometry of the blade is obviously a very important factor in determining what effect

it will have on the flow. Therefore, the first step in the blade model is to numerically represn"

the shape of the blade.

In the direct or analysis problem, the blade geometry is known prior to the calculation of

the flow. The geometry is defined in terms of coordinates of discrete po~ints that lie on the blade

surface. These points are grouped according to design sections that form airfoil or vane sections

stacked up between the inner hub and outer shroud. Fig 1.Ia shows the design section of each
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blade at a particular radial station. Tile other design sections are located at the interbection of

the blades and a surface of revolution referenced to a different base radius. Because the flow is

considered to be axisymmetric, all of the blades must have the same geometry, and thus only one

needs to be considered. A mean line or camberline can be determined along each design station

by bisecting the pressure and suction surfaces. In the blade model that has been developed, the

complexity of determining the proper loading distribution has been simplified by ignoring the

effects of blade thickness. Thus, for this model the blade is completely defined in terms of the

camberlines. The meridional direction for a particular design section is defined by the profile of

the surface of revolution, as shown in Fig. 1.lb. This meridional direction, m, is coincident with

the projection of the camberline onto the axial-radial plane.

One of the primary factors determining how the fluid reacts to the blade is the local blade

angle, /', which is the angle of the blade camberline with respect to the meridional direction.

Since the blades are three-dimensional, the camberlines are actually curves that do not lie in

any one plane. To simplify the calculation of the blade angle, the camberlines are conformally

mapped, according to the operation defined in Eq. 6.1, into the transformed blade-to-blade plane

which is defined in terms of two coordinates (z, y). Because the mapping process is conformal,

arigular measure is conserved and the local slope of the curve in the blade-to-blade plane is equal

to the negative tangent of the blade angle.

dz = rLldO (6. a)

dy = !ý-dm (6.1b)

r

/'=tan-
1 (-)(62

The conformal plane coordinates are scaled by the leading edge radius, rLE, of the particular

design section.

Once the coordinates of the camberline in the conformal plane have been determined, they

must be interpol;.ted to yield values at the grid nodes and eas, /west control volume faces. The
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design points describing the camberline are considered to form a mesh on the axisymmetric plane.

In this plane, the known axial and radial coordinates of both the grid and the blad are used to

relate blade characteristics from the design points to the positions on the grid. Four neighboring

design points are isolated by finding the ones that form a quadrilateral mesh cell inside which the

desired grid point lies. Blade angles, conformal plane coordinates, or any other quantity known

on the blade surface can be interpolated from these four points to the location on the grid.

The meridional directions along the blade are defined by the design sections, but these do

not exist on the grid. Instead, the ý gridlines are assumed to spocify the meridional directions,

Metrics can be used to express meridional quantities in terms of axial and radial values. The

meridional velocity, Vm, is equal to the projection of the total velocity onto the meridional line,

or t gridline.

8-- + 8" T (6.3)
-7 + r

0Oz(4=
=9 = Z(/(Z 2 + r 2)1 2  (6.4a)

Sr~ =r Z2( + r2)1 /2  (6.4b)

Vm = zmyv + rmvr (6.5)

6.2 Determination of the Deviation Angles

Typically, the flow is not aligned with the blade as the fluid passes over the trailing edge. The

angular difference between the flow angle, fl, and the blade angle, )', is known as the deviation

angle, 6. This quantity is important from the standpoint of turbomachinery performance. If the

deviation angle is large, then the blade may not adequately turn the flow. The deviation angle

is a result of having only a finite number of blades, boundary layer development and possible
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separation, secondary flows, and for centrifugal machines the relative rotation of the fluid within

the blade row. The determination of the deviation angle provides a means of estimating the

blade loading near the trailing edge.

It would be desirable to allow the deviation angle to evolve as intermediate flow solutions

are determined in the iterative process, However, 6 is an important factor in the overall body

force distribution, so it is imperative that realistic values of 6 be maintained. This cannot be

assured if the deviation angle is calculated using potentially unrealistic intermediate solutions, so

the deviation angle is calculated at the outset of the solution process and held fixed to enhance

computational stability. At this stage in the understanding of the numerical modeling of blade

forces this is not an unreasonable simplification. A physically realistic iterative scheme based

on a uniform static pressure at the discharge is used to determine the deviation angles. This

procedure also prevents the solution from being dependent upon the initial guess of the velocity

field.

In the field of centrifugal turbomachines, the flow deviation from the blade direction is more

commonly expressed as a slip factor, a, rather than a deviation angle. A relationship for the slip

factor, based on a simple model of the relative fluid rotation within the blade row, was developed

by Stodola [33]:

a -11 CO '" (6.6)
1 - OTE tan (6,6

where N is the number of blades and € is the flow coefficient defined as the ratio of the meridional

velocity to the wheel speed, U. The wheel speed is equal to the angular velocity of the blade

times the radius. In the impeller calculations of this investigation, the reference length used for

nondimensionalizing variables is equal to the diameter of the impeller shroud at the leading edge,

and the reference velocity is the wheel speed at this location. Therefore, Eq. 6.7 holds for the

nondimensional variables.

2(67)
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There is a distinct meridional path for each row of control volumes; thus, a separate slip

factor and resulting deviation angle are calculated for each row. The Stodola slip factor is only a

function of the outlet conditions, thus only a t,, distribution at the trailing edge must be specified.

Experimental data indicates that the inlet meridional velocity profile is nearly uniform over a

wide range of operating conditions (see Section 8.3), making the leading edge VM distribution a

known function of the operating condition. The trailing edge V, distribution is calculated by

assuming that the static pressure rise, from the leading to trailing cdge, is the same for each row

of nodes. An initial estimate of the outlet profile is made, and this data is used to calculate the

change in static pressure for each grid row according to the Euler pump equation (Eq. 6.8). The

outlet ve (Eq. 6.9) and slip factors are calculated using known values.

p= r7PUTg~e+E - V -' (6.8)

v T-- = 0(UTE - Vr.,. tan f,*E) (6.9)

The efficiency of the pump, t7, is evaluated by the method described in Section 6.4. No preswirl is

imparted to the fluid, so the inlet tangential velocity is zero and does not appear in the equation.

The average static pressure rise over all of the gridlines is determined and used to calculate a

new outlet meridional velocity profile. An expression for 1 rT is found by manipuLting Eq.

6.8. The resulting distribution of exit meridional velocities is scaled to satisfy continuity, and the

process is repeated until the meridional velocity profile converges.

The slip factor resulting from the converged V,,,, distribution is used to calculate a deviation

angle by subtracting .he blade angle from the flow angle.

/3TE = tan- [(UTE - a(UTE - V,,r, tan /?rE)) / 1,.r1] (6.10)

6 =TE - T'E (6.11)
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6.3 Specification of the Streamline and Flow Angles in the Blade Passage

One effect that the bludes have on the flow is to turn or deflect the flow from an axial-radial

plane, thereby changing its angular momentum. In other words, the blades impart swirl to the

flow. Axial symmetry is not violated by streamlines which do not lie within a single axial-radial

plane, the only requirement is that these streamlines must represent some average curve that all

of the flow can be considered to follow. Determining the local turning provided by the blades

is the same as determining a component of the force that the blades exert on the fluid. In the

blade model developed in this investigation, the amount of turning is calculated by estimating

the shape of the streamline that the fluid follows as it moves through the blade passage. The

blade loading is then found by calculating the force required to have the flow follow the estimated

streamline.

The streamlines are laid out in conformal planes, where the slope of the path is equal to the

slope in the physical space. The deviation angle, determined in Section 6.2, fixes the slope of

the streamline at the trailing edge. The flow angle at the leading edge is determined from the

upstream velocity vector and the known blade speed as given in Eq. 6.12.

,OLE = tan- ( ULE -VOLE) (6.12)U LE -•L

The tangential velocity at the leading edge, VOLE is typically zero because there is no preswirl.

However, when a recirculating flow is set up in the leading edge region, some swirl is convected

out of the blade row at the leading edge, then back into it at a different radial station. Therefore,

Vo.LE is retained in Eq. 6.12 and set equal to the tangential velocity at the node upstream of

the leading edge. A separate streamline is specified for each row of control volumes, because the

meridional direction follows the ý gridline which is unique for each row of nodes.

Within the mixed-flow impeller that is the focus of this research, the behavior of the flow in

the area of the leading edge is strongly dependent on the local inlet incidence angle. The incidence
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angle is the angular difference between the relative flow direction and the blade camberline at the

leading edge. In the trailing edge region, the fluid motion is primarily dependent on the blade

shape and the deviation angle. In between these two areas, the relatively long blades turn the

flow tangent to the blade. This behavior is modeled in the specification of the mean streamline

curve in the blade-to-blade plane. The control point curve fitting technique, as described by

Eiseman [34], is used to define a smooth streamline while specifying a minimal number of points.

This curve fitting technique was chosen because the resulting curve lies in the convex hull formed

by the control points, thereby preventing the occurrence of physically unrealistic oscillations in

the streamline.

Fig. 6.1 shows a representative blade passage in the conformal transformed plane and

the layout of the streamline. The thick, solid lines represent the blades, and the dashed line

corresponds to the center of the blade passage. Six control points, marked by dots, are used

to define the streamline. They are placed to assure that the flow enters and leaves the passage

with the correct flow angles and to guarantee that the flow is turned tangent to the blade at the

one-third chord point. The control point curve is characterized by a curve which passes through

the endpoints with a slope equal to that of the line segment connecting the endpoirt and the

adjacent point. Thus, the first and second points are placed to yield the desired OLE, and the

fifth and sixth points are located to give the required ý3E. The control point curve intersects

the line segment between consecutive interior control points with a slope equal to that of the

connecting segment. Therefore, the streamline, marked by the thin, solid line in Fig. 6.1, passes

tangent to the blade at the one-third chord point, because the third and fourth control points

are centered about. the one-third chord location along the passage centerline.

The location of the streamline within the blade passage is arbitrary, only the curvature of the

streamline affects the flow. But in keeping with the axisymmetric assumption, it is reasonable to

assume that the flow primarily remains centered within the blade passagt. As previously stated,

the blade model is capable of accounting for nonaxisymmetric effects. The leading and trailing
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edges are the most sensitive regions of the blade, so the nonaxisymmetric effects will be focused

in these regions. Thus, the second and fifth control points are placed on the passage centerline,

making the departure of the mean streamline from the cei.-erline minimal for the bulk of the

chord length. The first and last points are meridionally located at the leading and trailing edges

of the blade row and are positioned on the z axis in accordance with the inlet and outlet flow

angles. The fluid cannot cross from one blade passage to another, so the first and last points

are placed not farther than half of the width of the blade passage away from the centerline. The

second and fifth points are repositioned closer to the blade tips if the slopes would otherwise

result in the streamline crossing the channel boundary. Nominally, the second point is place at

the 1/6 chord location and the fifth point is set at the 9/10 chord location.

Control point curve interpolation functions are used to calculate the local slope of the stream-

line at each node and east/west CV face according to their meridional coordinate. The flow angle

is equal to the inverse tangent of the negative slope.

,i = tan_ (_-d) (6.13)

6.4 Determination of the Tangcential Velocities and Body Forces

from the Flow Angles

The streamline geometry does not directly enter into the momentum equations. Therefore,

in order to place the effects of the blade into the momentum equations, quantities which do

appear in the momentum equations must be extracted from the knowledge of the streamline

shape.

Dividing the differential distance in Eq. 6.13 by a small change in time results in an expres-

sion of the flow angle in terms of two velocities.

Stan (614)

l | m | mm m mmy /d
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The velocity in the numerator is equal to the flow speed in the tangential direction relative to the

moving blade. The speed represented in the denominator of Eq. 6.14 is simply the meridional

velocity. For a known flow angle, the angular velocity in the absolute reference frame is therefore

calculated according to Eq. 6.15.

ve = U - V. tan /3 (6.15)

An angular velocity is calculated at the nodes and east/west CV faces from the flow angles

which have been calculated at these locations. Linear interpolation of the nodal velocities is used

to calculate the meridional velocity at the control volume fare.

After the tangential velocity distribution is found over the entire blade, the tangential body

forces that will yield this distribution are determined. These forces are calculated for every

control volume on the blade according to the simple angular momentum balance shown in Eq.

6.16. The integral of the angular momentum source term (Eq. 4.17) with the body force term

removed is denoted by SO.

AýAir F = Aoveo - E Aiv, - (6.16)
0

Because the tangential velocities, calculated using Eq. 6.15, are used in the evaluation of Fe, the

velocity field that is returned by the solution of the discretized momentum equation will satisfy

the specified streamline at convergence. During intermediate solutions the changing axial and

radial velocities tend to perturb the flow from the streamline. However, as discussed in Section

6.5, the perturbation is kept to a minimum by updating ve and Fe after the A, momentum

coefficients are calculated, but before the equations are under-relaxed.

Determining the radial and axial blade loading is the final step in implementing the blade

model. F, and Fr are the only remaining quantities that have not been evaluated. These forces

are found by resolving a force in the meridional direction into its cylindrical components.

F, = F (6.170)

F, = rF. (6.17b)
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In the blade model, the forces normal to the meridional direction in the axisymmetric plane are

assumed to be negligible. This approximation is not unreasonable as the normal force is usually

small compared to the centripetal forces and radial pressure gradients. The forces normal to the

meridional direction become more significant when the blades are highly skewed.

The primary effect of the meridional force is to propel the fluid through a region of adverse

pressure gradient. In a centrifugal pump, there is a large total pressure rise from the inlet to the

discharge of the impeller. By manipulating Euler's pump equation, the increase in total pressure

can be shown to be comprised of two parts, a rise in static pressure and a rise in dynamic pressure.

The dynamic head rise goes directly into changing the kinetic energy of the fluid; therefore, it is

not affected by the blade efficiency. The change in static enthalpy from one meridional position

to the next is the result of centrifugal forces and the diffusion of the relative velocity.

A~p = 'p((U 2 
- U,•) + (w. - w')) (6.18)

w2 = + (U -_ve) 2  (6.19)

The magnitude of relative velocity in the blade passage is denoted as w. The first term in this

equation represents the head rise due to the centrifugal forces exerted on the fluid. Because

centrifugal forces are present even in solid body rotation of a fluid (i.e. without motion of the

fluid relative to the blades) it can be assumed that no losses are associated with this portion

oL the change in static pressure. However, total pressure losses do occur during the diffusion of

the relative velocity. Therefore, an efficiency, 71, is associated with this quantity. The resulting

expression for the static pressure rise is shown in Eq. 6.20.

Ap = Ip((UP - U.') - tq(w' - W')) (6.20)

By coupling the efficiency to the existing flow conditions, a simple loss model is incorporated

into the blade model.
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There is no analytic expression for the efficiency, so an empirical model must be used. Viscous

losses throughout the blade passage and near the leading and trailing edges depend upon different

parameters; therefore, different expressions for the efficiency are used in each section of the blade.

Eq. 6.22 is used to calculate the efficiency in the first third of the blade. Eq. 6.25 is used in

the latter third of the blade. In the middle third of the blade, the efficiency varies linearly as a

function of chord length from the leading to trailing edge value.

The efficiency for the region near the leading edge is assumed to depend solely on the

incidence angle, i. Beyond a 200 incidence, full separation of the fluid from the leading edge

is assumed, and the efficiency is given a minimum value. Up to an 80 incidence, the fluid is

considered to be fully attached and the leading edge is presumed to be working at maximum

efficiency. A linear variation between the extremes is used for intermediate incid ... values. The

maximum and minimum efficiencies of 0.75 and 0.10, respectively, were selected based on typical

performance values for cascades. No attempt was made in this investigation to improve these

estimates.

i =OLE - qlLE (6.21)

0.75 if Iil < 8°;

77LE = 0.10 if Ii Ž> 200; (6.22)
0.75 - .65 otherwise.

The efficiency at the trailing edge is assumed to be a function only of the relative diffusion.

If the flow at the outlet has reversed, then the efficiency is assumed to be a minimum. Otherwise,

a piece-wise linear distribution is used which is a function of the ratio of the net change in relative

velocities to the leading edge relative velocity. The expression corresponding to the first satisfied

condition in Eq. 6.25 is used to calculate tITE. The constants in Eq. 6.25 were estimated based

on typical diffuser or nozzle performance.

If = (WLE - WTE)/WLE (6.23)

7mar = (WLE - (V,2,: + UTE)1 2 )/WLE (6.24)
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0.1 if V,," < 0;
0.1 if 3' >_ 0.9;

TITE 0.95 if w1' > (E,,rE + U2E)I/ 2  (6.25)
0.95 - 0.2(7rnar - 7)/Yz if -t _ 0
0.75 - 0.657/0.9 if-'f > 0

The meridional and tangential velocities and the wheel speeds are known at the east/west

control volume faces. Therefore, the change in pressure along the meridional direction from the

western to the eastern face is found using Eq. 6.20. The meridional body force required to

produce this static pressure rise can now be computed by applying the momentum equations.

An expression for the meridional pressure gradient is found by combining the inviscid axial

and radial momentum equations according to Eq. 6.3. Some pressure changes will occur due

to the shear forces in the fluid. By neglecting these terms in the determination of the body

forces, the pressure correction equation will generate a pressure field that is consistent with both

the viscous and blade forces. If these terms were included, the body force would account for

the viscous effects and there would be nothing left to drive the pressure corrector equation for

the control volumes in the blade. The meridional body force appears in the expression of the

meridional pressure gradient. The meridional momentum equation canl be manipulated to form

an expression for the meridional body force as shown in Eq. 6.26.

AýAT7rJFm = A dAqrJdPm -A2ArmJpV2 +

z.. [(Ai~prUv2 ), + (i~prVv,)") +

rm [(Ai7prUv,), + (A~prVr)"] (6.26)

The meridional pressure gradient is evaluated as the ratio of the change in static pressure, as

given by Eq. 6.20, to the cha ge in meridional distance, which is equal to the denominator in Eq.

6.4. Linear interpolation of the nodal values of v, and v, is used to calculate the facial velocity

components.

If the meridional flow is reversed within a blade row, then a streamline cannot exist entirely

within a single row of control volumes. When this occurs the meridional body force is assumed to
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be caused by drag, acting counter to the flow, in the meridional direction. That drag force, which

is assumed to be negligible compared to the pressure rise in forward flow regimes, is calculated

as follows:

Fm. = D = 4CDw 2A/V (6.27)

where V is the volume of the CV, A is the surface area of the CV projected onto the blade,

and CD is the coefficient of drag. A coefficient of drag of 0.5 was found to provide enough force

to prevent recirculating regions from growing unrealistically large. If the flow is reversed at the

leading or trailing edges, it is assumed that there is enough swirl to allow the fluid to enter or

leave the blade row with a flow angle equal to the blade angle.

6.5 Implementation of the Blade Model within the PWvIM Algorithm

The remainder of the chapter explains how the blade model is implemented within the

solution algorithm, while maintaining stability. As the outline in Section 4.7 shows, the blade

model is called after the viscous source terms and the Ai coefficients have been calculated. This

sequence is followed because the blade model also requires these quantities. The model is called

before the under-relaxation is applied to the momentum equation coefficients, so that the iterative

solution results in the required strcamline as soon as possible. The tangential velocity is directly

affected by the blade model. The blade model affects the axial and radial velocities after the

momentum equations have been solved, The pressure is only affected by the presence of the

blades indirectly, and because PWIM is a pressure corrector scheme, the development of the

pressure field always lags that of the velocity fields. If the pressure has not had a chance to

develop, physically unrealistic velocity fields will arise as there will be no centripetal pressure

forces and meridional pressure rise to counter the swirl and body forces. Thus, immediately
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introducing the full effect of the blade model into the momentum equations tends to destabilize

the solution. A number of stability enhancing measures are taken to preven.. this destabilization.

The streamline geometry is updated only during intermittent outer loop iteration-, so the

flow fields have a chance to stabilize while adjusting to the current streamline. The tangen-

tial velocities and body forces are calculated every iteration so that the flow remains on the

streamlines. During the initial iterations of the solution, the tangential effects are estimated,

but the meridional body forces are not immediately calculated This allows a pressure field that

balances the centrifugai force of fluid to develop. After a few iterations, the meridional body

force is calculated and gradually introduced into the momentum equations. This permits a more

stable evolution of the pressure, which will typically increase significantly through the blade row.

Fourth order polynomial smoothing is used on the meridional body forces to avoid an unrealistic

blade loading fluctuations which can cause the solution to diverge. The smoothing is applied

row-by-row and then column-by-column. Following the smoothing process, the body forces are

then scaled so that the total loading on the blade is not altered.
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Code Validation

Once the flow solver was written, it was thoroughly checked to insure that it correctly solves

the momentum and continuity equations. The code was written in modular form so that most

of the FORTRAN subroutines could be independently checked.

The first step in the solution algorithm is to map the grid from the physical space into the

computational plane. This entails computing the metrics and the Jacobian of the transformation.

The block of code responsible for carrying out these calculations was checked by comparing the

results with hand calculations to verify that it works properly.

Both facial and nodal metrics are required. The quantities for the interior nodes are found

using second-order accurate central differencing of the vertical face midpoints (denoted by "+" in

Fig. 4.4) for the "C" gradients and of the horizontal face midpoints (denoted by "x" in Fig. 4.4)

for the 7 gradients. This keeps the mapping on as local a scale as possible. Any discontinuities

in the gridlines, such as those that appear in the streamwise lines in Fig. 4.4, are resolved by this

treatment of the mapping. These discontinuities appear at the control volume faces, rather than

at the nodes, because the grid was generated in terms of the CV corners. Quadrilateral control

volumes are formed by preventing the gridlines from changing direction at the midface. Nodal

coordinates are used to calculate :q and rt at the vertical faces and z,, and r. at the horizontal

faces. The control volume corners are used to compute the remaining facial metrics. The nodes

are collocated with the facial coordinates at the boundaries, and there the metrics are evaluated

using second-order accurate one-sided differencing.
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Because the governing equations are solved in the computational plane, gradients with re-

spect to ý and r frequently appear. These gradients refer to the changes in the nodal quantities

(V,,Vr,Vo, and p), where the changes are evaluated at the nodes (o, ZE, w, N, s), at the vertical

faces (e, ,), or at the horizontal faces (,, ,). A number of gradient subroutines were written to

cover the various permutations. These subroutines were checked by verifying that they returned

the correct gradients on a linearly varying field.

The nonlinear system of equations that governs the fluid motion are solved iteratively as

sets of linear equations. The discretized momentum and pressure corrector equations (Eqs. 4.12-

14,40) each represent a system of linear equations. Four algorithms are employed to solve these

sets of equations. One solver sweeps the field row by row using the common Thomas tridiagonal

algorithm to solve a particular row. A-other equation solver uses the same technique applied

column by column. A subroutine that uses Stone's strongly implicit method [25] is available

in the code. A direct, b•.ndA matrix solver is also available in the program to allow for a

noniterative solution to the pressure corrector equation. This banded matrix solver is based on

lower/upper matrix decomposition and was coded explicitly for pentadiagonal systems. All four

procedures can be checked independently of the means by which their coefficients are generated.

The equation residuals must go to zero for each linear system. Zero residuals indicate that the

algorithms were properly coded.

The residual is a measure of the amount by which a field fails to satisfy the linear equations.

When the solution field, 0, is found, the residuals are zero everywhere in the field. The residual

of Eq. 4.10 is given below.

R = Ao'o - (AEOE + Aw~w + Ajv0N + As~s + Su) (7.1)

There is a residual for each equation in the linear system. A number of ways of utilizing the

residuals of the individual equations to measure overall convergence can be used. The simplest

one, which is used in this work, is to monitor convergence in terms of the largest absoh te value
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of all of the residuals in the field. When the absolute values of R for the mass and momnentum

equations all drop below a specified value, the flow is considered to be solved. If the convergence

limit is set low enough, then in addition to eliminating the residuals, the flow fields will stop

evolving. The mass source residual is scaled by the mass flux into the domain and the momentum

residuals are normalized by the incoming momentum. The normalization makes the convergence

criteria independent of geometry and flow conditions.

Verifying the proper working of the pressure correction scheme can be done independently

of the discretized momentum equations. The pressure corrector, p', can be found directly using

the banded matri- solver. When this solver is employed and the necessary corrections to the

facial velocities are made, the mass sources must compietely vanish regardless of the velocity

field returned by the momeritum equations. This is expected since the p' equations were formu-

lated with the purpose of eliminating mass sources, and the direct solver assures that the set of

equations are solved to a high level of accuracy.

Keeping in mind the validation procedures already discussed, there are only two primary

sections left to check in the basic flow solver: the set of momentum equation solutions and the

functioning of the entire code as a whole. Unfortunately, there is no easy way to check the

conservation of momentum. Therefore, the code as a whole and momentum conservation are

verified simultaneously.

Two approaches are possible for code validation. First, an exact solution in a known geom-

etry may be input into the code to see if it immediately recognizes the solution as the converged

flow solution, or the flow may be solved on a specified geometry starting with an arbitrary initial

guess. A comparison may then be made between the calculated and known solutions. The latter

method was used, because it demonstrates that the converged solution is independent of the

initial guess.

Such phenomena as false diffusion, caused by the multi-dimensionality of the flow and skew-

ness of the fluid velocity with respect to the gridlines, Taylor series truncation, arising in numer-

ous stages -f the discretization process, and floating point errors will contaminate the solution to
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varying degrees. Current theory cannot determine the amount of error a priori; however, experi-

ence and simple numerical experiments are helpful in determining when a solution is sufficiently

accurate. Floating point errors can never be completely eliminated, because digital computers

store numerical values to a limited number of significant figures. However, the iterative nature of

PWIM renders this type of error virtually negligible, as the errors are not compounded from one

iteration to the next. Properly choosing test case geometry and grid specification make some or

all c! the remaining err-!r- rmeglgible. The fo!f6-ving sections discuss the specific flo- ,

were used to validate the code.

7.1 Flow in a Straight Pipe

Fully developed flow in an axisymmetric pipe or rectangular channel can be solved analyt-

ically. The resulting velocity is parallel to the walls, reaching a maximum at the centerline and

decreasing to zero as a parabolic function of the distance from the center. The pressure field, as

is always the case in incompressible flow where there is no equation of state to relate the thermo-

dynamic variables, is unique to within an additive constant. The streamlines are parallel to the

pipe, and the pressure is constant across the cross-section. A constant axial pressure gradient

is set up within the pipe to overcome the viscous effects. The dimtnsionless pressure drop is

dependent on the Reynolds number, as shown in Eq. 7.2.

Op -32/Re, for a circular pipe (7.2a)a:
r - -12/Re, for a 2-D channel (7.2b)

The characteristic velocity and length in the Reynolds number are the average velocity and pipe

diameter (channel height), respectively.
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A variety of trials using this geometry were run so the solution returned by the code could

be checked against analytic results.

7.1.1 Uniform Grid

A uniform orthogonal grid was generated to cover the pipe, so that the performance of

the code in the absence of numerical diffusion and truncation errors could be tested. When a

parabolic, or fully developed, velocity profile is specified at the inlet, aligning the gridlines with

the pipe walls eliminates the effects of numerical diffusion, because the flow is always parallel

to the gridlines. Using a uniform physical space grid removes the truncation errors, because

flow fields are polynomials of no higher than second-order, and the discretization process was

carried out to second-order accuracy. For this type of grid, the spacing is constant, and the

mapping operation is a scaling of the grid in the axial and radial directions so as to make the

spacing unity. When a parabolic inlet profile was used, the resulting flow was the inlet profile

convected unchanged all the way through the pipe and a constant pressure drop equal to the

value given by Eq. 7.2 resulted. This was tested over a wide range of Reynolds numbers for both

the cylindrical and Cartesian coordinate systems. When a uniform inlet velocity profile is used,

the velocity profile evolves toward a parabolic shape, and the pressure gradient approaches the

theoretical value. Fig. 7.1 shows a plot of the calculated velocity vectors in the neighborhood of

the inlet for an entrance flow at Rc = 100. The lower boundary is the plane of symmetry (r = 0)

and the upper boundary is a no-slip wall. This convention is used throughout this work, unless

otherwise stated. The radial velocity near the inlet is due to the sudden appearance of the wall.

The boundary layer begins to form in the first column of control volumes, so a radial velocity

is needed to remove the mass from the region of slower flow. By the time tile exit is reached, a

parabolic profile has formed. Fig. 7.2 shows the pressure drop along the axial lir,ý at the center
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of the physical grid (r = 0.25) for both parabolic and constant inlet velocity profiles. The profiles

correspond to equal mass flows into the pipe, hence the pressure drops eventually attain the fully

developed value. Flow from which these curves were taken is for a pipe with a nondimensional

outer radius of 0.5 and a length of 5.5. The grid was a very coarse 9 x 7. Despite the coarseness

the grid the analytical pressure gradient was attained, due primarily to the simplicity of the flow.

Calculating pipe flow in a uniform grid does not in itself validate the accuracy of the code, but

it does demonstrate that nonorthogonal terms arising from the mapping properly vanish when

the gridlines meet at right angles. This geometry also shows that all four types of boundary

conditions are accurately handled. Velocity is specified at the inlet, a plane of symmetry exists

at the lower boundary, the upper surface is a no-slip wall, and the flow is assumed to be constant

in the axial direction and normal to tie boundary at the outlet.

7.1.2 Nonuniform Grids and Turbulence Model Test

The transformed equations are simplified if the grid is uniform. To determine if the program

can properly handle a grid with nonuniform spacing, flow through a grid with control volumes

of alternating widths and/or heights was studied. Four test cases were run. The first test case

is for flow on a uniform grid. This case serves as a baseline for the numerical experiment. The

object of the experiment was to see how changing grid spacing affects the results; therefore, a

standard is needed from which the comparisons can be made. The control is further maintained

in each of the four trials, by using a fully developed inlet velocity profile to prevent the effects of

grid spacing from being confused with those of developing flow. In the second case, the widths of

the control volumes varied such that a 2, 1, 2, 1 ... alternating pattern of neighboring CV length

ratios was formed. Height, rather than wiUth, was varied in the third trial. Both CV height and
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width varied in a repeating pattern in the fourth case. Fig. 7.3 shows the grid for the last case.

Because a ratio of 2 was chosen for alternate CV thicknesses, the nodes are uniformly spaced.

Only the distance between the control volume faces varies.

Fig. 7.4 shows the plot of the axial gradients at the center of the grid (r = 0.25) for each of

the four cases. The pressure gradient for the uniform grid is equal to the analytic value. When

the axial spacings vary, the pressure gradient is oscillatory. This is caused by the cyclic behavior

of the metrics, primarily z( and J. If a plot of these functions was made as a function of the

axial distance from the inlet, the curve would look similar to that of the pressure gradient curve.

Central differencing is used to evaluate these metrics at the CV faces, and the Taylor series

expansion that yields their second-order accurate finite difference expression is shown in Eq. 7.3.

CIO OE- 0 +• (- ( Lý)2 + ' T A •4 5( +.. (7.3)

For a smooth function, the higher-order derivatives are small, and the second-order central dif-

ferencing approximation, which neglects the quantity in the parentheses, is accurate. However,

when the widths vary, the axial coordinate is not a smooth function of C, nor is r a smooth func-

tion of r when the heights vary; therefore, the terms in the parentheses are no longer negligible

and the truiic&4.*ion crm, .ontaminates tl, results.

A variation in CV height does not cause oscillations in the the pressure gradients, because

pressure is constant across the pipe. However, it does cause the calculated pressure drop to

rise slightly. This is due to the use of central differencing in the diffusive fluxes. Because the

horizontal control volume faces are not located midway between the nodes, central differencing

is not an accurate approximation for the diffusive gradient of v, with respect to r.

Fig. 7.5 shows the pressure as a function of the axial location for each for the four test cases.

None of the trials have an oscillatory pressure field, because the nodes are uniformly spaced

even though the control volumes change in size. The pre.sure is very close to the analytical

distribution for all four cases. This demonstrates that the solution error is caused by truncation,
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not programming error, and the test illustrates how the calculated results can be distorted if the

control volume sizes vary too suddenly.

Pipe flow was also examined to check the accuracy of the Baldwin-Lomax turbulenc.e model

1291. Trial cases were run on grids with 25 nodes across the pipe. The nodes were clustered using

the technique described in Chapter 5, which upon inspection of the converged solution was seen

to yield accurate estimations of y+ at the interior layer nodes. Five nodes were placed within

the inner layer.

The calculated fully developed outlet velocity profiles for laminar flow and for turbulent flow

at three different Reynolds numbers are shown in Fig. 7.6. Also shown, are experimental data for

the same flow conditions [17, p. 598]. As seen by the resolution of the calculated velocity profiles,

a sufficient number of nodes was used for the calculations. The calculated laminar velocity profile

shows that the solver is able to handle highly stretched grids. The turbulent calculations show a

tendency to underestimate the velocity near the wall. The errors for the high Reynolds number

cases are within acceptable limits. However, the Re = 4000 case shows appreciable discrepancies

between the calculated and experimental results. This does not imply that there is a problem

with the way the turbulence model was implemented. Considering that Baldwin and Lomax only

published results for 1.33 x 106 < Re < 21 x 106, it is logical to assume that the assumptions that

led to the model, such as the premise that vorticity distribution is an indication of the boundary

layer length scale, are invalid at Reynolds numbers near the point of transition from laminar to

turbulent flow. This does not present a severe limitation as far as turbomachinery calculations

go, because turbomachine Reynolds numbers are more on the order of 1 x 106, not 1000.

It is possible that the constants used in the turbulence model for axisymmetric flow should

not be equal to those used for Cartesian flows. Hcwever, in view of the ability of the model as it

stands to predict the effects of turbulence, a decision was made to forego surveying the effect that

changing the values of one or more parameters would have on the velocity profile. Such a task
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would require a tremendous amount of time, and there is no evidence that the modifications could

be applied to yield more accurate results across a wide range of geometries and flow conditions.

7.1.3 Skewed Gridlines and Differencing Scheme Comparisons

It has been shown that the flow solver can treat orthogonal grids. The next step in the

validation procedure is to examine how nonorthogonal grids are treated. Nonorthogonal grids

can result from skewing either or both sets of gridlines. To help place a control on the numerical

experiment, the nonorthogonality is examined by skewing one family of gridlines at a time. In

the first series of tests, the ý gridlines are skewed with respect to the flow direction. To eliminate

truncation errors caused by nonuniform spacing near the boundaries, the edges of the flow domain

are also skewed. Skewing the gridlines with respect to the flow direction sets up the possibility

that the calculated results may be contaminated by numerical diffusion. This phenomenon is

discussed in more detail in the following text.

Because the boundary lines are skewed with respect to the flow direction, those boundaries

no longer correspond to the limits of the pipe, so new boundary conditions are necessary. The

grid and geometry chosen to act as the test case is shown in Fig. 7.7. Its nondimensional length

is 2.0. The lower corner of the inlet is located at the centerline, and the upper corner is placed at

r = 0.25, midway to the pipe wall. The top of the outlet boundary is on the pipe wall (r = 0.5)

and the bottom is at r = 0.25. Because pipe flow is axial, mass passes through the upper and

lower boundaries, a different phenomenon than that which occurs in the previously used grids.

The velocity is a known analytic function of the radius, so the BC is a specified velocity at all

four boundaries. Fig. 7.8 shows a plot of the velocity vectors for a converged solution. Notice

that each profile is parabolic, but the extrema change in response to the radial location of the
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nodes. Runs were made on this geometry for a number of different nodal concentrations and

using various differencing schemes.

For fully developed pipe flow the velocity profile is essentially determined by continuity,

thus the behavior of the pressure field provides more insight into the workings of the momentum

equations. To the eye, the velocity profiles for the various test cases are indistinguishable from

one another. However, the pressure field is strongly dependent on both the differencing scheme

and the number of nodes that make up the grid.

Fig. 7.9 shows a plot of the calculated pressure gradients on the skewed grid for three

different grid densities. The solid line is the control case. It was calculated using the same

specified velocity boundaries, except that the grid for this case extended from the centerline to

the pipe wall at the inlet and outlet, removing the skew and accompanying numerical diffusion.

The pressure drop for the control case is equal to the analytic value throughout the pipe. On the

skewed grids, the pressure drop can no longer refer to the gradient at a particular radial location,

so the curves on the graph refer to the value at the central node of each axial station. Hybrid

differencing was used for these calculations, and for a cell Reynolds number greater than 2, this

scheme acts like pure upwind differencing, which is very prone to numerical diffusion. Numerical

diffusion causes the curves to deviate from the constant pressure drop. The error is lessened when

the number of nodes in the streamwise direction is increased. Adding nodes in the cross-stream

direction does not decrease the numerical diffusion.

The departure of the pressure drop from the analytic value is the greatest near the inle.

and outlet, because there is a discontinuity in the accuracy of the discretized equations in these

regions. The known velocity boundary conditions are specified with second-order accurary, but

the differencing schemes are only first-order accurate. This sudden change in accuracy results in

larger errors in the results near the inlet and exit boundaries.

Fig. 7.10 shows a comparison of the calculated pressure gradients when hybrid differencing,

QUICK differencing with hybrid about the boundaries, and the fully higher-order QUICKR
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differencing .. heme are used. The sudden change in accuracy present when QUICK and hybrid

differencing are used in conjunction causes a large perturbation in the results. The location of

the perturbation lead to the initial conclusion that it was caused by an incorrect application of

the BC's or an improper melding of the two differencing schemes. However, the same incongruity

appeared in a one-dimensional hand calculation using the dual differencing scheme. Whenever a

lower-order differencing scheme is used near the boundary, the relatively inaccurate differencing

approximation is applied in the neighborhood of the precisely defined BC, resulting in a large

discrepancy between analytic and calculated pressure drops. Notice how this error is not present

at the outlet on the QUICK/hybrid curve. It is removed, because the positive flow direction

means that QUICK is used on the control volume face just upstream of the outlet boundary.

Consistently applying the higher-order differencing via the QUICKR scheme removes the large

error about both the inlet and outlet regions.

Various grid densities were examined using the QUICKR differencing scheme, and Fig. 7.11

shows the results compared to the those calculated using the lower-order differencing schemes on

the finest grid. The results using QUICKR on the 27 x 27 grid show that the pressure drop is

equal to the analytic value, demonstrating that the program correctly handles the nonorthogonal

terms arising from a skew of the ý gridlines. As hand calculations of i-iviscid flow have shown,

QUICKR completely removes numerical diffusion from the pipe flow calculation and thus enables

the ability of the code to handle nonorthogonal grids to be evaluated. Because QUICKR evaluates

convective fluxes with third-order accuracy, approximating the facial velocity with a second-order

polynomial, it accurately resolves the parabolic axial velocity distribution. The slight error in

pressure drop visible on the QUICKR curves in Fig. 7.I is due to a failure on the part of central

differencing to capture the true viscous shear. QUICKR does not remove all errors from all

flow conditions, but it is much more accurate than the lower-order schemes. The answer to the

question of whether or not the added expense of QUICKR provides a sufficient payoff in terms

of higher accuracy is dependent on the needs of the investigator. However, it should be noted
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that the added accuracy could reduce the number of required grid nodes, and thereby more than

make up for the expense incurred by the use of QUICKR. The results for the 7 x 7 grid using

QUICKR are shown to as good as those of the lower-order differencing schemes on the 27 x 27

grid in Fig. 7.11.

The type of geometry used to test the effects of streamwise gridline skew demonstrates the

ability of the code to handle permeable boundaries. Specified boundary transpiration poses no

additional problems to the flow solver, nor does it require any special treatment.

To complete the verification that nonorthogonal grids are handled correctly by the code,

the ri gridlines were also skewed, and then both families of gridlines were skewed. The inlet and

outlet boundaries were rotated for the grids with q gridline skew. This kept the grid spacing

uniform, as did rotating the upper and lower boundaries for the case of ý gridline skew. The

grid that was used to test dual gridline skew is shown in Fig. 7.12. The calculated pressure

drop at the central nodes for each gridline skew permutation is given in Fig. 7.13. The skew

for the j7 direction corresponds to the gridlines running 80* with respect to the horizontal. The

ý skew is 7.120, the same as that used in in the previously discussed trials. Because the grid is

uniform and the flow is axial, the ir skew does not introduce any errors into the flow. QUICKR

eliminates numerical diffusion, and the only error caused by the C skew is due to the inability of

central differencing to resolve the viscous gradients. The curves of Fig 7.13 are further evidence

that the flow solver is able to handle nonorthogonality and that the solution of the transformed

conservation equations is correctly implemented.

7.1.4 Verification of Conservation of Angular Momentum

The previous section dealt only with flows that had an axial component to the velocity.

Angular momentum did not enter into any of these flows. To validate the implementation of
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the angular momcntum equation, a test case analogous to the popular driven cavity is examined.

Consider a pipe with capped ends, whose outer wall is set spinning about the centerline. Viscosity

imparts swirl to the fluid, reaching the speed of the pipe at the wall and linearly dropping to

zero at the centerline. Because the ends of the pipe are capped, there are no endwall effects.

Axial and radial velocities are zero everywhere, and the conservation equations are satisfied if

the pressure field meets the two conditions specified in Eq. 7.4.

=0 (7.4a)

a:
0_p p,_l,(7.4b)

&r r

If the reference velocity is taken as the rotational speed of the wall, then the analytic solution to

the flow is:

v, = 0 (7.5a)

v, -= 0 (7.5b)

v# = 2r (7.5c)

0- = 4r (7.5e)

ar

Unlike the other flows that have been examined, the steady state solution to shear-driven pipe

flow is independent of Reynolds number.

Fig. 7.14 shows a plot of the resulting angular velocity when the flow was solved using the

grid shown in Fig. 7.12. As expected, the vo profiles are a linear function of radius. The boundary

velocities were all specified, because the analytic solution of the velocity field is a known function

of the radius. Fig. 7.15 shows a plot of radial pressure gradient as a function of radius for the

same grids that were used in the final series of tests in Section 7.1.3. The pressure gradients were

evaluated along the column of nodes at the center of the grid. All test cases produce pressure

gradients equal to the theoretical values. This is strong evidence supporting the assertion that



106

ii �

I �
'I

Hi -�

I
Vt

liii'III V
ii -A V

1 �
I I It

I j�j1 j �

bO
hiii'
liii 0

V
Ii It

II VHIliii
I V

ii

11111 i� C.,

& I � � � �

ii 1'
:1liii 1,



107

F-- LI,

JzzzzI

-
~ ~NI

tn)

4c
- -

-. 

:
1 N 1

CLt- ,-

Js

I ~ cr*~
f ~t ii - I I '

-ý Iri d



108

the flow solver is properly coded to yield a solution that conserves angular momentum, and that

the solver is properly treating the terms arising from grid nonorthogonality.

The proper coding of the centripetal acceleration terms in the momentum equations is vali-

dated by this test case. The pressure gradients, which arise out of the radial momentum equation,

are driven by the ve distribution that is returned by the angular momentum equation. Radial

and tangential velocities are coupled by the acceleration term, pv,rv, in the angular momentum

equation. Thus, the equations are discretized in a consistent manner. Otherwise, the iterative

solver would not have converged to a solution which eliminates the pvrve term from the angular

momentum equation, as the radial velocity is not zero until convergence when the proper pressure

field is present.

7.2 Flow in a Radial Diffuser

Each of the previous test cases dealt with either primarily axial or purely angular flow.

These trials in themselves do not sufficiently demonstrate the conservation of radial momentum,

nor do they provide an adequate forum to demonstrate the importance of using the cylindrical

differencing schemes. To emphasize this latter point, standard differencing schemes were used

in the axial geometries, and they still provided accurate results. Flow in a radial diffuser with

parallel walls was examined to help complete the validation process.

Unlike axial and angular flow, there is no geometry that is dominated by radial flow for

which an analytic solution can be found for a viscous fluid. However, all of the viscous terms

in the radial momentum equation, with a single exception, have a corresponding term in the

axial momentum equation. The flow solver evaluates the axial and radial viscous source terms

successively. For every line of code used to supplement the viscous terms in S, there is an

equivalent line for S,. Thus, there is little possibility that the viscous terms could be correctly
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calculated for one equation, but not the other. Sections 7.1.1-3 demonstrate that the axial terms

are properly handled. The exception to the axial-radial viscous correspondcnce is the third term

on the right hand side of Eq. 2.16. This nonconservative term is present, because formulating the

entire equation in strongly conservative form causes the term in Eq. 3.19 to take the following

form:

"7(7.6)

Discretizing a system of equations based on this format presents several problems, so this single

viscous term is kept in nonconservative format. Comparisons with hand calculations verify that

this component is correctly handled by the flow solver.

A radial diffuser presents the solver with the need to deal with the radial dependence of area

through which the velocity passes. As fluid passes through a diffuser, the flow is slowed to satisfy

continuity. The static pressure rises as the velocity is reduced; dynamic pressure is converted

to a static pressure rise. For inviscid flow and no axial velocity, the radial velocity is inversely

proportional to r and the radial pressure gradient is inversely proportional to the radius cubed.

v, = E (7.7a)
r

•p c 2  (7.7b)
8r~ - 2r3

The test cases for radial diffuser flows are similar to those used in Section 7.1.3. The ve-

locity is specified along the boundary according to Eq. 7.7a. Four uniformly spaced grids were

generated. One grid was orthogonal, one had skewed radial gridlines, another had skewed axial

gridlines, and the fourth grid had both sets of gridlines skewed to contribute to grid nonorthog-

onality. For each grid, the inlet radius is unity and the outlet radius is equal to 5. The width

of the diffuser is equal to unity, as is the constant c in Eq. 7.7. When axial, 77, gridline skew is

considered, the gridlines are oriented at 100 with respect to the horizontal. For radial, ý, gridline

skew, the inlet extends from the left corner of the diffuser to the midline, and the outlet extends

from the middle of the diffuser over to the right side. A typical grid possessing dual skew is
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shown in Fig. 7.16. The converged velocity field for this grid is presented in Fig. 7.17. It shows

how the velocity decreases as the radius increases.

Fig. 7.18 shows a comparison of the analytic and calculated radial pressure gradients along

the center of the grid for a variety of nodal densities. ror this case, the flow was calculated on an

orthogonal grid with uniformly spaced nodes using noncylindrical QUICKR differencing. As the

number of nodes in the direction of the flow is increased, the pressure gradient approaches the

theoretical curve. However, the calculated values never attain the analytic values, because central

differencing cannot precisely resolve the gradients of the cubic pressure field, nor can QUICKR

differencing interpolate the nodal values to give the exact facial radial velocities which vary

inversely with r. This is the behavior that led to th, need to develop a differencing scheme that

accounts for the differences between cylindrical and rectangular coordinate spaces. The problem

is further illustrated in Fig. 7.19. In this figure, the results given by QUICKR and hybrid

differencing are compared. The flow is parallel to the gridlines; therefore, numerical diffusion

is not present and the error can be traced back to the invalidity of the upwind approximation.

Notice that the larger errors appear at the lower radii. This is where the percent change in

surface area is largest and the fluid velocity is most rapidly decreased. Consequently, this is the

region where the Cartesian differencing schemes are least accurate.

Fig. 7.20 shows a comparison of the results obtained using standard and cylindrical differ-

encing schem.-s. The results indicate that the lower-order cylindrical differencing scheme is as

accurate as the higher-order standard differencing scheme in this radial application, the former

being less expensive to implement. In this case cylindrical QUICKR is as accurate as standard

QUICKR differencing. For this simple flow, the errors arising from the higher-order approx-

imations to the convective flux are much less that the truncation errors that prevent central

differencing from precisely resolving the cubic pressure gradient.

No stability problems were caused by the fact that the central coefficient in the cylindrical

differencing schemes is not equal to the sum of the neighboring coefficients.
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Uniformly Spaced Radial Diffuser Grid with Skewed • and t• Gridlines
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Radial Diffuser Velocity Field on Uniformly Spaced Grid with
Skewed ý and q Gridlines
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Fig. 7.21 shows that gridline skew does not affect the ability of the code to treat nonorthog-

onal terms for radial flows. The absence of significant amounts of numerical diffusion is not

due to an inherent ability on the part of cylindrical upwind differencing to eliminate numerical

diffusion. Rather, it is due to the gradual change in the velocity fields within the radial diffuser.

Numerical diffusion is not as prevalent as it is in pipe flow, where the velocity varied with the

square of the radius. The slight variations in the curves are due to the fact that the truncation

errors in the finite difference evaluation of the flow field gradients are dependent on radius.

A viscous fluid flowing inside a radial diffuser with parallel no-slip walls was examined.

A parabolic inlet velocity profile was used, and the flow was assumed to be purely radial at

the outlet. A converged solution for an orthogonal grid is shown in Fig. 7.22, displaying the

capability of the flow solver to handle a radial discharge without specifying the velocity profile.

There is no visual evidence that the viscous effects are misrepresented in the program.

Furthermore, a check of global radial momentum conservation was made by adding together the

pressure and wall shear forces and comparing those to the change in momentum between the

inlet and outlet. The net momentum loss decreased as the number of nodes increased, but the

net loss was never zero. A momentum balance was not obtained, because the pressures at the

inlet and outlet had to be interpolated from the interior nodes and the shear forces were kr.own

only at discrete locations. This gives further validation that the radial momentum equation is

solved correctly.

Now that a substantial amount of evidence has been presented to verify that the conserva-

tion equations are correctly solved, calculations of realistic flows within a mixed-flow centrifugal

impeller will be presented.
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Figure 7.22

Velocity Field for a Viscous Fluid in a Radial Diffuser



Chapter 8

Mixed-Flow Centrifugal Impeller Through-Flow Calculations

The primary application of the computer code is as an analysis tool for numericaily predicting

fluid flow within existing and proposed turbomachinery and axisymmetric passages. In this

chapter, the results for through-flow calculations in a mixed-flow centrifugal impeller over a

wide range of operating conditions are presented. The impeller has been tested in the Applied

Research Laboratory centrifugal impeller test facility, and the calculated results are compared to

the experimental data.

The geometry of the test facility is shown in Fig. 8.1. This geometry is the physical space

flow domain for the axisymmetric flow solution. The thick dark lines, h-c and g-d, mark the

projection of the impeller blade leading and trailing edges onto the axisymmetric plane. The

control volumes that fall within these lines are considered to lie on the blade, and are thus the

CV's for which body forces are calculated via the blade model. Appropriate boundary conditions

for the various sections of the geometry are indicated on the figure.

Pump performance was measured experimentally by collecting data at three different static

pressure taps. The first tap was located upstream of the impeller to measure the reference inlet

conditions. The second tap was located slightly past the discharge of the impeller, and the third

tap was placed at the end of the radial diffuser into which the impeller expels the fluid. The

locations of the pressure taps are labeled on Fig. 8.1 as stations 1, 2, and 3, respectively. Radial

and tangential velocity profiles were measured using Laser Doppler Velocimetry (LDV). The data

was collected along the path, referred to as the LDV traverse line, indicated by the dashed line

in Fig. 8.1.
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After the experimental data was taken, it was converted into nondimensional performance

coefficients. Eqs. 8.1-8.4 give the expressions for the nondimensional pump performance coeffi-

cients. Experimental data is gathered in terms of dimensional quantities, so the first expressions

are used to reduce the data. The right-most equalities in these expressions represent the di-

mensionless variables used in the computer program. The inlet tip speed and diameter are the

reference velocity and length, respectively.

4)= = V.. (8.1)

P2 -P1"012 A=U2  
- P•-P (8.2)

771 -h (hN - rh--2 (8.3)
22rN=N 4 2T

P= (2rN)3ts = T/4 (8.4)

T = E_• rFoVolume (8.5)
BLADE

The global flow coefficient, 4D, defines the operating condition. It is based on the net volume

flow rate through the impeller, and is distinct from the local flow coefficient, 4. The static head

rise coefficient, V,, indicates the increase in static pressure produced by the impeller and the

dynamic pressure recovery in the diffuser. The efficiency, '1, is the ratio of the actual head rise

to the maximum possible value. The maximum head rise is determined by the change in angular

momentum of the fluid, which is equal to the torque, T, on the impeller. In the program, T is

calculated as the summation of the product of the radius, angular body force, and volume for

each CV on the blade. Efficiency and head rise are determined from a pressure change, where the

computed pressures are taken from the locations corresponding to the experimental measurement

stations. The power coefficient, P, is a dimensionless measure of the shaft power required to drive

the impeller.

Computer speed, rather than memory, was the most restrictive factor on the size of the

grid that could be used in the flow solver. The finest grid was used on which solutions could be
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found within a reasonable computation time. The same grid was used for all of the calculations,

because computational limits precluded adding nodes in regions of high flow gradients. The grid

quality was high, especially when considering the intricacy of the geometry and the several slope

discontinuities on the boundaries.

Fig. 8.2 shows most of the 175 x 32 grid that was used in the impeller through-flow calcula-

tions. An extension, equal in length to the diameter of the impeller, was added to the outlet of

the grid to allow the recirculating regions to close inside the computational domain. See Section

4.6.2 for a discussion of the need for this extension. An extension was also placed at the inlet to

prevent the specified inlet velocity profiles from distorting any recirculating regions originating in

the blade row. Gridlines were placed along the leading and trailing edges, the LDV measurement

line, and measurement stations 2 and 3.

Eiseman's control point (CP) grid generation technique [34] was used to generate the grid

in the very irregular geometry of the pump facility. This algebraic method uses a sparse mesh of

control points and a series of interpolations, using the control point curve functions mentioned

in Chapter 6, to govern the placement and clustering of the nodes. Control point curves remain

in the convex hull of the CP's, so the gridlines are smooth and free of superfluous oscillations. If

necessary, however, discontinuities can be resolved by collocating control points. Gridlines can be

placed along specified curves, such as the blade leading and trailing edges, by repeating the line

of control points along the desired curve. The spacing of nearby CP's, over which the user has

complete control, determines the amount of clustering. Grid characteristics are determined only

by the local control points; therefore, grid quality can be improved in specific regions by adjusting

the location of the nearest CP's. The flexibility of this technique makes .. a very powerful grid

generation tool, and yet the cost, in terms of computational expense and memory requirements,

is minimal. No iterative solutions are required to determine the coordinates of the grid points,

and the only significant memory allocations are for the arrays that hold the coordinates of the

grid and control points.
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The remainder of this chapter is dedicated to discussing the results of the through-flow

calculations. In the first section, the flow fields for each of the various operating conditions,

are compared with experimental data. Overall performance predictions are compared to the

measured performance in the last section.

8.1 Comparison of Calculated and Measured Flow Fields

Calculations were made at the design condition, above and below the design condition, as

well as at shutoff. This allowed an assessment to be made of the flow solver and blade model

over the entire range of operating conditions. The global Reynolds number was the same for

each calculation, 4.486 x 106, corresponding to a constant rotational speed in the experiments.

A uniform velocity profile was specified at the inlet, the magnitude of which depended upon

the flow coefficient. All results were found using single precision calculations on a VAX 8350

computer, which is significantly slower than most machines currently used in CFD applications.

The memory requirements are approximately 204 bytes per node and an additional 124 bytes for

every node on the blade. This does not include the additional memory requirement for the direct

solver, which was discussed in Section 4.5.

A few remarks concerning the overall performance of the flow solver during the through-flow

calculations are in order, before the results of the individual calculations are presented.

It was found that the use of the Baldwin-Lomax turbulence model was not appropriate

for the through-flow calculations that were made. That model required an excessive number

of nodes to be located close to the wall. With refined grids near the walls, convergence could

not be reached when the problems of geometry, flow conditions, and low computational speed

were compounded in the realistic flow cases. Therefore, a simple two-layer model was used

instead. The thickness of the laminar layer was set equal to the height of the row of nodes
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bordering the wall. Thus, the molecular viscosity was used within this laminar layer, whereas

the turbulent viscosity throughout the remainder of the flow was modeled as a constant (35 for

this investigation) times the laminar viscosity.

Because of the low computer speed, cylindrical QUICKR differencing could not be used. Its

explicit implementation decreases convergence speed. Cylindrical upwind differencing was used

instead.

Despite the numerous stability enhancing measures that were installed in the blade model,

it was found that the solution would not converge when the estimated blade-to-blade mean

streamline and blade loading were allowed to evolve with the iterative solution. Therefore,

the mean streamline shape was estimated at the start of the iterative solution and held fixed.

The meridional body forces were calculated at the same time and held fixed throughout the

solution. This is an serious deficiency on the part of the blade model. However, despite the blade

model deficiencies, useful results, that often times matched well with the experimental data, were

returned by the solver.

In some of the calculations that are presented in the following sections, the residuals did

not drop to machine zero. The relaxation factor was not the cause of the instabilities. Rather,

the recirculating regions in thc blade row caused the flow quantities in these regions to fluctuate

about a mean level. The residuals of the nodes outside these regions vanished and were not

affected by the unsteady region. A sufficient number of iterations were run so that the data that

is presented did not change appreciably with further iterations.

8.1.1 Design-Point Calculation

The impeller was designed to perform at maximum efficiency at an operating condition of

S= 0.28. This flow condition was the one that was most most readily solved, because the blade
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loading did not set up any recirculating zones within the blade row. A plot of the convergen-e

rate is shown in Fig. 8.3. The sudden increase in the residuals at iteration 90, marks the point

where the meridional blade forces were introduced into the momentum equations. The total

calculation time was 24,000 seconds. Over 80% of that tine was u.,d in sol, ing the pressure

corrector equations with the banded matrix direct solver.

The velocity field in the axisymmetric plane is shown in Fig. 8.4. The precursor to a

separated region is present near the shroud and the midchord of the blade. This region plays a

key role in the recirculating regions that develop at off-design flow conditions. Fig. 8.5 shows

the pressure contours. The code confirms that the design-point criteria of a constant pressure

rise at the trailing edge has been met. Fig. 8.6 shows a comparison of the calculated and

measured velocity profiles. The trends in the calculated velocity profiles do not match those of

the experimental data. Fig. 8.4 shows that by the time fluid reaches the radial position of the LDV

measurement, it is affected by the recirculating zone at the bend. The simple turbulence model

cannot accurately treat this recirculating zone, so it is possible that the discrepancies between

the calculated and measured profiles are caused by an inadequate turbulence model. Near the

impeller trailing edge, which is largely unaffected by the turbulence model, the calculated radial

profile is similar in shape to that of the experimental data. This is further evidence in support

of the supposition that the turbulence model, not the blade model, causes the poor agreement

with the measured data when no recirculating zones are present in the blade row.

8.1.2 Above Design-Point Calculation

The blades were designed so that there would be zero incidence at 0 = 0.32. Calculated

velocity vectors in the meridional plane are shown in Fig. 8.7 for this flow coefficient. The blade

midchord area near the shroud contains a very small recirculating region. Since no experimental
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data was collected inside the impeller, there is no experimental data to either confirm or deny the

existence of this separated region in the actual impeller. After 460 iterations and 34,700 seconds

of CPU time, the residuals in the recirculating region did not vanish, but the solution was not

changing noticeably. The pressure contours are given in Fig. 8.8. It shows that the pressure

rise is still fairly constant at the trailing edge. As indicated in Fig. 8.9, the calculated velocity

profiles still fail to match the measured data. The predicted profile at the LDV station decreases

in the direction from the shroud to hub walls, whereas the experimental data shows the opposite

trend. As in the previous case, the predicted velocity profile at the impeller discharge shows the

correct trend. It is again suspected that the inadequacies of the turbulence model destroy the

validity of the solution in the diffuser.

8.1.3 Below Design-Point Calculation

The calculated through-flow velocity field for the off-design operating condition of 4ý = 0.14

is shown in Fig. 8.10. This solution was produced after 340 iterations and 26,000 seconds of

CPU time. The pressure contours for this flow are shown in Fig. 8.11. The recirculating region

predicted at the impeller inlet has been observed experimentally. To this author's knowledge,

no previous numerical studies have correctly predicted a through-flow plane recirculating region

that extends from the impeller to the upstream region. Fig. 8.12 shows that both the existence

and width of the separated region in the diffuser were also correctly predicted. The maximum

radial velocity at the impeller discharge was located on the hub side in each of the two high flow

coefficient cases. This low coefficient solution correctly shows that the location of the maximum

radial velocity has moved to the shroud side.
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8.1.4 Shutoff Flow Calculation

One of the most drastic operating conditions occurs when flow to the impeller is shutoff,

while the impeller continues to be driven at a constant rotational speed. No LDV data was

gathered for this type of flow, but video cameras did show a recirculating region upstream of the

leading edge of the impeller. The calculated velocity fields in the axisymmetric plane, Fig. 8.13,

show that the impeller sets up three recirculating regions. One passing through the leading edge,

one within the impeller near the leading edge at the hub, and another one passing through the

trailing edge. The flow in these regions rotate in different directions, which is consistent with the

need to have a zero net tangential component of vorticity. The pressure contours are shown in

Fig. 8.14. The high gradients indicate that the grid was inadequate for this calculation. This was

a contributing factor to the instability of this solution. The given results only indicate the nature

of the flow. The code was not able to stabilize the recirculating regions when the meridional

body forces were used. When the blade model was turned off and the tangential velocities within

the blade were set equal to the wheel speed, the solution did converge. Recirculating regions,

similar to the two larger ones in Fig. 8.13, were then predicted.

8.2 Comparison of Calculated and Measured Pump Performance Parameters

Global performance parameters are used to specify the overall operating performance of a

turbomachine. These parameters typically express the level of energy transfer which takes place

and the efficiency of the energy transfer process. The performance parameters are formulated by

considering the machine to be a single system, disregarding the spatial variations in the primitive

variable fields. A machine can also be considered to be made up of various components, each

with its own operating characteristics, acting as a subsystem of the whole. Referring to Fig. 8.1,
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the static head coefficient 012 reflects the performance of the impeller, while 013 indicates the

overall change in the fluid as it passed through the entire pump (impeller and diffuser).

Perhaps the most important performance parameter for a pump is the static head coefficient,

4. The primary purpose of a pump is to increase the static pressure of the fluid. The head

coefficient indicates the level of head or pressure rise in dimensionless form. Fig. 8.15 shows

a comparison of the calculated and measured head rises at two measurement stations. The

predicted values are very close to the experimental results for the two higher flow coefficient

cases. The other two static head coefficients are consistently high. For the control volumes

with reversed flow, the meridional body forces (drag) are possibly too high. Since the pressure

rise must counterbalance these forces, this would create a larger than expected pressure rise.

The radial diffuser recovers some of the dynamic head, as indicated by the rise in static head

coefficient from the second to third measuring station.

A pump works by traisferring energy from the impeller to the fluid. The ratio of the useful

energy to the total energy transferred to the fluid is known as the efficiency, 17. Useful energy

delivered by a pump is in the form of a static pressure rise. The total energy delivered to the fluid

is related to the energy required to drive the impeller. This value is readily evaluated from the

torque and the rotational speed of the impeller. Fig. 8.16 shows a comparison of the calculated

and measured efficiencies at two measurement stations. For the efficiency, it is the two lower flow

coefficient cases that show a better agreement between the predicted and the measure results.

The error in 0 for the low 4Z conditions would seem to indicate that the agreement between

the efficiencies for these two cases is merely a coincidence. Unresolved deficiencies in the blade

model still remain when a streamline, confined to a single row of nodes, is used for reversed flow.

Additional static pressure rise occurs in the diffuser, as indicated by the increase in efficiency

from station 2 to 3.

The power coefficient represents the dimensionless power required to drive the impeller. It

can be calculated directly using the torque on the impeller or it can be evaluated indirectly from
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the head coefficient, flow coefficient, and efficiency. Since these coefficients have been presented

in Fig 8.15 and 8.16 the power coefficient does not provide any additional information. However,

the values of the power coefficient at the different operating conditions are given in Fig. 8.17 for

completeness.
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Chapter 9

Conclusions and Recommendations

This research has illustrated the usefulness of a Navier-Stokes, axisymmetric flow solver

using a non-staggered grid. The Pressure-Weighted Interpolation Method has been successfully

modified for the solution of the axisymmetric, steady-state, incompressible, viscous flow equations

in generalized curvilinear coordinates. A modified form (QUICKR, QUICK Revised) of Leonard's

QUICK differencing has been shown to increase the accuracy of the solution by extending the

higher order differencing scheme to the boundaries and, thus, covering the entire flow domain.

A lower-order differencing scheme based on convective/diffusive decoupling and a higher-order

scheme based on QUICKR have been formulated for use in axisymmetric flows. These schemes

modify the standard upwind or convective assumption used in rectangular coordinate spaces

to form an analogous assumption that is consistent with the radial dependence of surface area

in cylindrical reference frames. Cylindrical upwind and cylindrical QUICKR differencing have

been shown to be more accurate than standard differencing schemes for radial flows. For axial

flows, they are algebraically equivalent to their Cartesian counterparts. Neither of the cylindrical

differencing schemes have presented any stability problems.

The mixed-flow centrifugal impeller through-flow calculations demonstrate the usefulness of

the code in indicating overall trends in the flow fields for design and off-design flow conditions.

Recirculating regions passing across and out of the blade rows have been successfully calculated.

The series of calculations indicates that a redesign of the impeller blades near the discharge may

improve the uniformity of the flow entering the diffuser.
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Integrating the experiences, both fruitful and unfruitful, undergone while carrying out the

research documented herein, yields several topics which are logical extensions of the work already

carried out. The most important ones are discussed in the following paragraphs.

A more robust blade model is the most pressing need in bringing the software package to

the point of a complete axisymmetric turbomachine design tool. The new model should depend

more strongly on the number of blades and incorporate blockage effects. A means for accounting

for the blade force normal to the meridional direction in the axisymmetric plane should also be

investigated. Reversed flows must also be treated more realistically.

An improved turbulence model should lead to improve results. This is a common need

throughout the computational fluid dynamics field, and because a great deal of research is be-

ing don- on this topic, the literature should be monitored for advances. Most of the more

sophisticated turbulence models currently available would also greatly enhance the prediction

capabilities.

Solving the pressure corrector equations, a stiff linear system, takes the majority of the

computational effort expended in the solution process. A multilevel solver was tested on this

set of equations to see if it could accelerate convergence. (Because the momentum equations

are easily solved using a tridiagonal algorithm, there seems to be little advantage in using a

full multilevel solver on the entire system of governing equations.) The anisotropicity of the

pressure corrector equation coefficients causes the multilevel solver to exhibit poor convergence

characteristics. Further research may yield insight into how information should be transferred

from one level to the next when the coefficient amplitudes vary widely in the different directions.

Such an understanding should lead to a modified multilevel algorithm with increased convergence

rates.

In 1990, Hobson and Lakshminarayana [35,36,37] presented the pressure substitution method

(PSM) and presented evidence that it outperforms PWIM. Essentially, PSM treats the "2 - 6"

pressure gradients in the facial contravariant velocities explicitly, and the "1 - 6" implicitly.
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Thus, an expression for pressure, rather than pressure corrector, can be found, permitting the

simultaneous solution of all flow fields via a block solver.

Their papers do leave some questions unanswered. The PWIM solv, hey used employed

a Gauss-Seidel iterative solution procedure for solving the sets of equations. A more efficient

iterative solver may lessen the advantage PSM has over PWIM. Neither did their PWIM use

SIMPLEC, which increases PWIM's velocity-pressure coupling. Also absent from these papers

was a discussion as to whether the increased coupling makes , or the added overhead associated

with block solvers. This is especially relevant because the momentum equations are easily solved.

Despite these questions, the potential benefits of PSM warrant further investigation.
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Appendix

Differencing Schemes

During the discussion of how the governing equations are discretized and solved using the

PWIM algorithm, it was stated that the integral form of the equations must be converted to

a linear, discretized equation. For a general transport quantity the equation took a five-point

stencil format:

(Ap - Sp)Oo = AEOE + Aw;w + ANON + As6s + Su (A.1)

The purpose of this appendix is to explain how these multiplicative coefficients, A,, are calculated.

The total flux across a control volume face is a linear combination of convective and diffusive

fluxes. The flux across a vehtical face (Eq. A,2a) and a horizontal face (Eq. A.2b) were derived

in Chapter 4.

F.4 = (i•prUO) - (i7rJg, Of•), (A.2a)

F" = (ýprV,), - (ýrrJg22¢,). (A.2b)

Second-order accurate central differencing can be used to evaluate the diffusive flux, but the

convective flux is difficult to evaluate as it is a function of the transported quantity at the control

volume face. Since the transported quantity is defined only at the nodes, the nodal values must

be used to approximate the facial value. The approximation process combined with the finite

difference expansion of the diff,'-;ve flux is called a differencing scheme.

Differencing schemes evaluate the total flux in terms of linear functions of the nodal quan-

tities. If only the two nodes surrounding the control volume face are used in the linear rerre-

sentation of the flux, the flux can be represented according to Eq. A.3. The " C and u d
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superscripts on the coefficients multiplying the nodal quantities correspond to convective and

diffusive influences, respectively.

FEf (aC 000 - aPEE) + (adg bo _ ad E) (A.3)

Expressing the total flux through the remaining three control volume faces in a similar manner

and gathering common terms (i.e. al and a d) places the linear discretized equation in the

following format:

Ap'o - AE4E - Awdw - ANv4N - AsO = S (A.4)

where the source terms have all been absorbed into S and the coefficient Ap is composed of

contributions from fluxes through each of the four CV faces. Moving all but the central node

terms to the right hand side of the equation yields the form given in Eq. A.1. The differencing

scheme can thus be described by the manner in which the coefficients Ai are formed. The

remainder of the appendix is devoted to presenting various differencing schemes. The scheme

that is appropriate for any given flow calculation is dependent on the geometry, fineness of the

grid, and needs of the user.

Because the diffusive coefficient and the control volume over which the governing equations

are integrate are identical for each momentum equation, the Ai coefficients are also identical. The

presence of only one type of control volume on the nonstaggered grid results in less computational

effort being expended in the discretization process, as compared to that required for staggered

grids.

A.1 Lower-Order Differencing Schemes

When only two nodal valut= appear in the linear expression for the total flux, the differencing

scheme is referred to as a lower-order scheme. High'r-order differencing schem .- use three or



154

more nodal values to approximate the total flux through a particular CV face. These higher-

order schemes are discussed in Section A.2. In the present section, a number of lower-order

differencing schemes are presented in terms of the coefficients, A,. Only the coefficients for the

eastern, western, and central nodes are formally stated. Those for the northern and southern

nodes are evaluated in a manner analogous to the eastern and western coefficients, respectively.

Lower-order differencing schemes are conveniently expressed in terms of the local, or cell,

Reynolds number. The computational space cell Reyn,,Ids numbers are:

fejj = C/D (A.5)

Ce = (prua?)o (A.6a)

De = (riJ911A77/Aý), (A.6b)

C. = (prVAý). (A.7a)

D, = (rrJg,,A•l/A7) (A.7b)

Evaluating the diffusive gradient using central differencing (i.e. Ode = (OE - 0o)/AL) yields the

following expression for the total flux:

4,f = D. [Re.O. - (OE - Oo)] (A.8a)

F. = D, [Re.0. - (ON - 0o)] (A.8b)

By introducing the contravariant velocities and the transformation metrics, it is possible to define

the cell Reynolds numbers in the computational domain as given in Eqs. 4.5-4.7. Therefore, any

differencing scheme based on a physical space Re,,,, can also be utilized in the computational

plane.

Upwind Differencing:

AE = D,(1 + [-Re,, 0]) (A.9a)

Aw D. (1 + [Re.,01) (A.9b)
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Upwind differencing [16, p. 105) states that the convected quantity is equal to the value

at the upstream node. The upstream direction is determined by the intrinsic FORTRAN MAX

function ([ J). Upwind differencing is only first-order accurate in the sense of Taylor series

truncation error. However, the truncation error is not an indication of the overall accuracy of the

scheme. Instead, it indicates how quickly the error falls off when the grid size is changed. Upwind

differencing accurately reflects the true physics of convection dominated flows. For convection

dominated, one-dimensional flow, upwind differencing yields a solution which is much closer to

the analytic solution of the convection-diffusion equation (Eq. A.10) than that produced by

approximating the facial quantity using second-order accurate central differencing [16, p. 105).

- = 0 (A.10)

However, for multi-dimensional applications, large amounts of numerical diffusion occur if the

flow is skewed with respect to the gridlines [16, pp. 105-109]. This diffusion can contaminate the

results with an unacceptable amount of error.

Central Differencing:

Ae = D,(1 - LRe,) (A.I1a)

Aw = D,(1 + •Rew) (A.11b)

Averaging nodal quantities to arrive at an expression for the convective flux is known as

central differencing [16, pp. 103). Central differencing cannot be used for high Reynolds number

flows on coarse grids, because this scheme becomes unstable for cell Reynolds numbers greater

than 2. The instability is a result of the A. coefficients becoming negative. When a coefficient

becomes negative, positive definiteness is destroyed, physically unrealistic variable dependencies

are formed, and iterative solutions fail to converge [16, pp. 103-104]. Some differencing schemes

make use of central differencing when it is stable or add artificial dissipation to enhance stability.

It is included in this discussion for completeness.
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Hybrid Differenc-ag:

AE = D,(Ij Re.I, 11- IRe.) (A.12a)

Aw = D.([ Re.I, 11 + IRe.) (A.12b)

Hybrid differencing [38] switches the scheme between central and upwind differencing. When

Re < 2, it is equivalent to central differencing. When central differencing would become unstable,

the hybrid scheme switches to upwind differencing. Hybrid differencing is effectively a rough curve

fit approximation to the analytic solution of the one-dimensional convection-diffusion equation.

Hybrid differencing is a widely used scheme [23,38,39], because it is unconditionally stable, is

computationally inexpensive to use, and exhibits favorable convergence properties.

Power Law Differencing:

= Dr. ([0, (1 - .IRe,15] + [-Roe, 0) (A.13a)
10

Aw = D. ([o, (1~ - IRe. D)I+ [Re,,,0I) (A. 13b)

Power law differencing [20] is a very close curve fit to the analytic solution of the one-

dimensional convection-diffusion equation. For Re < 10 a type of central differencing is used,

and for Re > 10 upwind differencing arises. Previous researchers [20, 39) have chosen power law

differencing over hybrid differencing, despite the fact that it is computationally more expensive,

because it yields more accurate results.

For all of the lower order differencing schemes, the central coefficient is equal to the sum of

the neighboring coefficients plus the mass source.

AP = AE + Aw + AN + As + (C, - C.) + (C. - C.) (A.14)

mo = C. -C. + C. - Co (A.1S)

The mass source goes to zero at convergence, so it may also be ignored during intermediate

solutions. However, retaining it prevents stability problems, because the individual mass flow
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rates arise from the linearization of the convective flux terms. For the stable differencing schemes,

upwind, hybrid, and power law, Ap will never drop below zero, even if the mass source is large and

negative. However, Ap can become zero with some differencing schemes if physically unrealistic

flow situations arise.

A.2 OUICKR Differencing

In an effort to maintain the description of the true physics of the flow provided by up-

wind differencing without incurring the corresponding numerical diffusion, Leonard [12] proposed

Quadratic Upwind Interpolation of Convective Kinematics (QUICK) differencing. Three-point

upwind-weighted differencing yields third-order accuracy in the expression of the facial values

(•e, 0.). This Taylor series expansion uses three nodal values, two upsLream and one down-

stream. Which nodes are used depends upon the direction of the flow. Central differencing is

still used to evaluate the diffusive component of the flux, so the formal accuracy of QUICK is

reduced to second-order. This is not entirely indicative of the accuracy of the overall scheme,

because the diffusive and convective fluxes are rarely of the same order of magnitude.

Figs. A.la-h show which nodes are used with the QUICK differencing scheme for forward

and reversed flow through the eastern, western, northern, and southern control volume faces. If

the convective velocity is zero, then it is immaterial how the facial quantity is approximated, since

it will be multiplied by the null mass flux. For a representative eastern face with a positive (Eq.

A.16a) or negative (Eq. A.16b) convective velocity, the truncated Taylor series approximation

for the facial value is:

Oe = (3 0E + 60o - Ow)/ 8  (A.16a)

0, = (30o + 6 0E - OEE)/ 8 (A.16b)



158

2I - - - • 1-- I - -L Ei Ii II I
L . ..- _- J

a. Positive Flow through Eastern Face b. Negative Flow through Eastern Face

L J

rr

I I I 1

I I

I I

I L J

e. Positive Flow through Southern Face f. Negative Flow through Southern Face

r--

I. I

I I - J

g. Positive Flow through Western Face h. Negative Flow through Western Face

Figure A.1

QUICK Differencing Stencils



159

For this higher-order differencing scheme, not only are the neighboring nodes brought into

the expression, but the nodes two control volumes away from the central node also appear in

the stencil. Because of this, the implementation of this differencing scheme at nodes near the

boundaries is more involved. Fig. A.2 shows a typical computational space grid. The CV faces

on which QUICK can be used are indicated. A " + " superscript indicates that QUICK can only

be used at that face if the flow is in the positive direction. A " -" superscript denotes a face

for which QUICK can only be used if the flow is reversed. If QUICK can be used regardless of

flow direction, no superscript is used. QUICK differencing cannot be used on the faces lying on

the boundary under any flow conditions, neither can the lower-order differencing schemes. These

faces are handled by an application of the boundary conditions (see Section 4.6). The problem

from the standpoint of QUICK lies in treating faces opposite the boundaries. These faces,

marked in Fig. A.2 as dependent on flow direction, bring in control volumes that lie outside of

the computatiunal domain. To prcvent this, Phillips and Schmidt [40] suggest turning off QUICK

differencing at the nodes whose stencil encompasses nodes which lie outside the computational

domain and using a lower-order scheme instead. However, this causes nonconservative solutions.

For example, the northern face of the grid node (3,3) is hybrid differenced, but the same face

acting as the southern wall of node (3,4) is treated using QUICK. The residual for a system

treated in this manner never goes to zero, making it more difficult to detect when a converged

solution is reached. Also, the accuracy drops near the wall, where flow gradients are most drastic

and precision most needed. Miller and Schmidt [23] report that mixing lower and higher order

differencing schemes produces imperceptible error. This is not surprising, since the primary case

they were studying was a driven cavity where the convective flux near all of the computational

boundaries is minimal. However, this author's research has shown that this treatment causes a

significant amount of error when mass flux enters the computational domain (see Section 7.1.3).

The error does not appear in the data presented by Miller and Schmidt, because the error occurs

in the inlet region, and their data only shows the flow field at the center of the domain.
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In an effort to treat the problems of QAICK dfferencing near the boundiary, two approaches

were investigated. The first wa.s to adapt Phillips and Schmidt's suggi..tion so that QUICK

was used wherever the flow directions allowed, and where it wws prohibited. hybrid differ,-ncing

was used. By basing the differen'cing on the control volume fac: rather than on the nodes, a

conservative differencing algorithm arises. This approach was not entirely successful because the

transition from regions using hybrid differencing into those using QUICK results a sudden change

in accuracy. The resulting flow fields have a corresponding discontinuity (see Section 7.1.3 for

further discussion of this phenomenon).

A second, and successful, solution to the problems caused by using QUICK differencing near

the boundarN was to extend Leonard's original approach so that it is applicable to C\ faces

that are opposite the boundary. Flow quantities are defined on the boundary, so the boundary

node is used in the Taylor series approximation of the convected quantity. Whereos the standard

QUICK differencing uses only nodal values centered in contro! volumes to approximate the facial

quantity, the new differencing scheme uses the nodes on each side of the control volume face

and the node on the boundary. Figs. A.3a-h show the control volumes on the east, west, north

and south boundaries, and indicate the flow conditions which make use of the boundary node

in the new scheme. The acronym QUICKR (for QUICK, Revised) is used to distinguish the

new d;fferencin_ scheme from the original QUICK, QUICKR maintains higher-order accuracy

throughout the flow domain, whereas QUICK has higher-order accuracy only in the interior. A

is appended to the QUICKR sy'ni,,qls whc:% it is necessary to distinguish the new Taylor

series approximation (Eq. A.17) from the standard QUICK series (Eq. A.16). The three-point

upAind-weighted T"aylor series approximation that is used in QUICKR for the control volume

faces opp>site t h,, boundaro,,' is shown in Eq. A.17 for pc,•itive flow through the eL-•tern face of

the control %.duniv that borders on the western boundary (Fig A.3g).

c,, (30 + o -- • )7• (. 17
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Using this approach, high accuracy is maintained throughout the flow domain, including the

legions near the walls where large flow gradients make the additional accuracy very desirable.

Implementing QUICKR's directional se!nsitivity is done through the use of switching factors

that become either positive or zero, depending on the flow direction. Defined in Eq. A.18, these

switching factors are based on the convective flux component.

S, = (ICel + C,)/2 s: = (JCI!- C)/2

s.+ = (0C.I + C-)/2 S- = (IC. C - /)2 (A.18)

For flow in the positive direction, the switches with a " + " superscript equal the mass flux, and

the " - " superscribed switches are zero. When the flow reverses, the former switches become

zero and the latter are equal to the absolute value of the mass flux.

Discretizing the flux terins for each of the four sides and collecting common nodal factors

yields the QUICKR differencing equations. For the face or faces which require the use of the

modified Taylor series expansion, (a', b', c', and d') of Eq. A.20 are substituted for (a, b, c, and

d) of Eq. A.19. These faces are marked with either a + " or . superscript in Fig. A.2.

a+, = c+ =-1 a; 3  b; 3  d; = 1

a+= b+= 2 d+ = - a- b = 3  d- = 1  (A.19)
W W 4 W 8 W 8

t+ = + 1 '++ = - ' ' -
-1 b=±=5 c' -1 a' = b',-1 d',-

a '+ = b l+ = 1 d '+ - -=•' • +- a'- = 1 b l = ½ c'l - - 1( , 0

AQ = -b+S+ + b,-S," - c-S- + D, (A.21a)

AQ= .. - b-S - c, S: + D, (A.21b)

A -E = d:Sý; (A.22a)

AQW= d+S++ (A.22b)
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= a S,+ - a'S + D,- aS+a-S+,+

a,+S,+ - a-S- + D, - a+S+ + a-S- + D. (A.23)

Unlike the lower-order differencing schemes, the central coefficient is not equal to the sum

of the neighboring coefficients plus the mass source. Adding eight coeffici, nts together does not

give the central coefficient, either. Weighting the Taylor series expansion in the upwind direction

is the cause of this variance. Other schemes exhibit a symmetrical weighting about the face.

QUICKR, however, weights the relative importance towards the upstream nodes while retaining

a smaller dependence on the downstream value.

Eq. A.24 shows the linearized equation with the nine-point stencil that arises from QUICKR.

AQoo A- E + AQw + AQv + AQs +

AQEEOEE + AQyivww + AQvf.WN + + (Os, +

Inspection of the QUICKR equations shows that negative coefficients can appear. For certain

flow situations diagonal dominance can be lost and the influence of the neighboring nodes will

overcome that of the central one. To counter these problems, which can lead to the divergence

of iterative solvers, Phillips and Schmidt [40] proposed using hybrid differencing in combination

with QUICK. They treat the hybrid terms implicitly, and in the explicit terms they add the

difference between the hybrid and QUICK terms. The accuracy of QUICKR is achieved via the

convergence behavior of hybrid differencing by placing the QUICKR into the code as follows:

AHro = AHE + A",'w + AHN + A•'"s + [. + SQ] (A.25o)

sQ = (Ag - AQo + (AQ - AH)6E + (A4 - A" )Ow +

(AQ - A")ON + (AQ - A,)OS +

AEOE + AQ 14,4ww + AQNN6NN + A(sýs (A.25b)



165

The superscript on the nodal coefficients denotes which type of differencing is used to evaluate

the factor. Any stable lower-order differencing operator, such as power law differencing, may be

used in place of the hybrid scheme. At convergence 0" = 0n+ and the hybrid terms cancel out,

leaving the fully QUICKR relationship shown in Eq. A.24. Under-relaxation of the equation is

not affected by the use of QUICKR if SQ is calculated prior to under-relaxation.

The negative coefficients make QUICKR susceptible to overshoot and undershoot [12]. Such

behavior during the early stage of convergence, when the flow fields are rapidly evolving, is likely

to cause the solution to diverge. To prevent this, the flow solution is allowed to stabilize over a

few outer loop iterations before QUICKR is turned on. QUICKR is turned off by setting SQ = 0.

A.3 Differencing Schemes for Cylindrical Coordinate System Applications

In the cylindrical coordinate system and the generalized curvilinear coordinate system de-

rived from it, the surface area is a function of radius. The transported quantity decreases as

the fluid moves in the radial direction, not due to shear forces within the fluid, but due to flux

conservation. In the discretization of the governing equations, this is manifested as an error in

the upwind approximation when there is a difference in radii between the two points across which

the differencing takes place.

An approximation, that is analogous to that used in rectangular coordinate spaces, concern-

ing the influence convection has on the transported quantity is made for cylindrical coordinate

applications. This approximation is referred to as the cylindrical convection approximation. The

subtle difference between the two approaches lies in assuming that it is the product of the radius

and transported quantity that is unchanged by convection, rather than the transported quantity

itself. For purely convective flow in the positive direction, the facial quantity in Cartesian spaces
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would be found according to equation Eq. A.26.

Ot = €o (A.26)

The cylindrical convection approximation results in the following expression for the facial value:

rOe. = ro4bo (A.27a)

0. = (ro/r.)Oo (A.27b)

This minor change increases the accuracy of the numerical model because it makes the discretized

equations reflect the dependence of the concentration of the transported quantity on the radial

location. Although the governing equations in cylindrical and rectangular coordinate systems

are often presented as subclasses of the same set of equations, no publications addressing this

characteristic of convection in cylindrical frames of reference have been found. Two differencing

schemes derived from this modification are presented and discussed in the remainder of this

section. The cylindrical convection approximation can be applied to any of the differencing

schemes in a similar manner.

Cylindrical Upwind Differencing:

AE = [-Ce,0] rE/r, + D, (A.28a)

Aw = [C,., O] rw/r r + D., (A.28b)

AO = I[C,OJ To/r, + D, + [-C,,0] "o/J,. + D,,. +

[C, ,0] ro/rr. + D. + [-C.,01 ro/r, + D, (A.29)

The convective and diffusive fluxes are treated separately in cylindrical upwind differencing.

Central differencing accurately reflects the physics of diffusion dominated flow, regardless of the

reference space, so no change is required for the diffusion terms. Using the cylindrical convection

approximation shown in Eq. A.27b, the facial quantity is approximated as the upwind nodal value
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multiplied by the ratio of the nodal radius to the facial radius. The FORTRAN MAX function is

used to determine the upwind node, just as it was in the upwind differencing scheme in Section

A.1. Dependcnce of the total flux on the local Reynolds number is modeled by the relative sizes

of the two component fluxes. The resulting differencing scheme reflects the dependence of the

transported quantity on the nodal location, making it more accurate than the other five-point

differencing schemes. However, it is formally described as a lower-order differencing scheme

because the upwind approximation is still only first-order accurate, even when it is consistent

with the cylindrical convection approximation.

Cylindrical QUICKR Differercing:

The higher-order differencing scheme presented in Section A.2 is formed by approximating

the facial quantity according to a three-point Taylor series approximation (Eqs. A.16 and 17).

The cylindrical convection approximation assumes that the quantity that is conserved by convec-

tion is (ro) rather than 0. Thus, if the Taylor series expansions that form the QUICKR differ-

encing scheme are made consistent with the cylindrical convection approximation, a higher-order

differencing scheme that is suitable for cylindrical applications results. Representative modified

Taylor series are given in Eq. A.30 (corresponding to Eq. A.16) and Eq. A.31 (corresponding to

Eq. A.17).

oe = (3 rEO-E + 6rooo - rwqw)/(8r.) (A.30a)

ot = (3ro~o + 6 rEcE - rEE4EE)/(Bre) (A.30b)

O, = (3roqpo + rEOE - rw~w)/(3re) (A.31)

The resulting scheme is referred to as cylindrical QUICKR differencing. It is implemented

into the solution algorithm in the manner described for QUICKR. The expressions for the nodal

coefficients are listed in the following equations.

- (-b Sý + b-S-)rE/r, (c-Sj-)rE/r. + D, (A.32a)

A` (b+Sj - bS-,)rw/r", - (c+S+)rw/r, + D,, (A.32b)
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AQE = (d'Sf)rEE/r, (A.33a)

Aww = (d+S.)rww/r. (A.33b)

AQo (a+S+ - aS.)ro/r, + D - (a+S + a-S,)rolr, + D. +

(a+S: - a-S.)ro/r. + D. (o+S+ + aSf)ro/,r + D, (A.34)

Despite the radii in the differencing coefficients changing the diagonal dominance charac-

teristics, no stability problems were encountered when either cylindrical differencing scheme was

used. A discussion of the effects of the cylindrical convection approximation on solution accuracy

and stability is given in Section 7.2. Note that the cylindrical differencing schemes revert to the

Cartesian form when the radii involved are equal.


